Advertisement

Journal of Economic Interaction and Coordination

, Volume 12, Issue 3, pp 613–634 | Cite as

The effect of structural disparities on knowledge diffusion in networks: an agent-based simulation model

  • Matthias MuellerEmail author
  • Kristina Bogner
  • Tobias Buchmann
  • Muhamed Kudic
Regular Article

Abstract

We apply an agent-based simulation approach to explore how and why typical network characteristics affect overall knowledge diffusion properties. To accomplish this task, we employ an agent-based simulation approach (ABM) which is based on a “barter trade” knowledge diffusion process. Our findings indicate that the overall degree distribution significantly affects a network’s knowledge diffusion performance. Nodes with a below-average number of links prove to be one of the bottlenecks for an efficient transmission of knowledge throughout the analysed networks. This indicates that diffusion-inhibiting overall network structures are the result of the myopic linking strategies of the actors at the micro level. Finally, we implement policy experiments in our simulation environment in order to analyse consequences of selected policy interventions. This complements previous research knowledge on diffusion processes in innovation networks.

Keywords

Innovation networks Knowledge diffusion Agent-based simulation Scale-free networks 

Notes

Acknowledgments

We gratefully acknowledge the financial support from the Dieter Schwarz Stiftung. In addition, we would like to thank Andreas Pyka, Robin Cowan, three anonymous reviewers, the participants of the EMAEE Conference, 1–3 June 2015, Maastricht, the Netherlands and the participants of the 1st EAEPE RA[X] Workshop, 2–3 November 2015, Essen, Germany for their helpful comments and suggestions. Needless to say, we are solely responsible for any remaining errors and omissions.

References

  1. Ahuja G (2000) Collaboration networks, structural hole, and innovation: a longitudinal study. Admin Sci Q 45(3):425–455CrossRefGoogle Scholar
  2. Baum JA, Calabrese T, Silverman BS (2000) Don’t go it alone: alliance network composition and startup’s performance in Canadian biotechnology. Strateg Manag J 21(3):267–294CrossRefGoogle Scholar
  3. Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512CrossRefGoogle Scholar
  4. Bollobás B, Riordan O, Spencer J, Tusnády G (2001) The degree sequence of a scale-free random graph process. Random Struct Algorithms 18(3):279–290CrossRefGoogle Scholar
  5. Borgatti SP, Everett MG (1999) Models of core/periphery structures. Soc Netw 21(4):375–395CrossRefGoogle Scholar
  6. Burt R (1992) Structural holes: the social structure of competition. Harvard, CambridgeGoogle Scholar
  7. Cattani G, Ferriani S (2008) A core/periphery perspective on individual creative performance: social networks and cinematic achievements in the hollywood film industry. Organ Sci 19(6):824–844CrossRefGoogle Scholar
  8. Coleman JS (1988) Social capital in the creation of human capital. Am J Sociol 94:S95–S120Google Scholar
  9. Cowan R, Jonard N (2007) Structural holes, innovation and the distribution of ideas. J Econ Interact Coord 2(2):93–110CrossRefGoogle Scholar
  10. Cowan R, Jonard N (2004) Network structure and the diffusion of knowledge. J Econ Dyn Control 28(8):1557–1575CrossRefGoogle Scholar
  11. Erdös P, Rényi A (1959) On random graphs. Publ Math Debr 6:290–297Google Scholar
  12. Erdös P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5:17–61Google Scholar
  13. Fleming L, King C, Juda AI (2007) Small worlds and regional innovation. Organ Sci 18(6):938–954CrossRefGoogle Scholar
  14. Grant RM, Baden-Fuller C (2004) A knowledge accessing theory of strategic alliances. J Manag Stud 41(1):61–84CrossRefGoogle Scholar
  15. Gilsing V, Nooteboom B, Vanhaverbeke W, Duysters G, van den Oord A (2008) Network embeddedness and the exploration of novel technologies: technological distance, betweenness centrality and density. Res Policy 37(10):1717–1731CrossRefGoogle Scholar
  16. Hanusch H, Pyka A (2007) Principles of neo-Schumpeterian economics. Camb J Econ 31(2):275–289CrossRefGoogle Scholar
  17. Hanson JR, Krackhardt D (1993) Informal networks: the company behind the chart. Harv Bus Rev 71(4):104–111Google Scholar
  18. Herstad SJ, Sandven T, Solberg E (2013) Location, education and enterprise growth. Appl Econ Lett 20(10):1019–1022CrossRefGoogle Scholar
  19. Kim H, Park Y (2009) Structural effects of R&D collaboration network on knowledge diffusion performance. Expert Syst Appl 36(5):8986–8992CrossRefGoogle Scholar
  20. Kudic M, Ehrenfeld W, Pusch T (2015) On the trail of core-periphery patterns in innovation networks—measurement and new empirical findings from the German laser industry. Ann Reg Sci 55(1):187–220CrossRefGoogle Scholar
  21. Levén P, Holmstroem J, Mathiassen L (2014) Managing research and innovation networks: evidence from a government sponsored cross-industry program. Res Policy 43(1):156–168CrossRefGoogle Scholar
  22. Lin M, Li N (2010) Scale-free network provides an optimal pattern for knowledge transfer. Phys A: Stat Mech Appl 389(3):473–480CrossRefGoogle Scholar
  23. Malerba F (1992) Learning by firms and incremental technical change. Econ J 102(413):845–859CrossRefGoogle Scholar
  24. Malerba F (2007) Innovation and the dynamics and evolution of industries: progress and challenges. Int J Ind Organ 25(4):675–699CrossRefGoogle Scholar
  25. Morone P, Taylor R (2010) Knowledge diffusion and innovation: modelling complex entrepreneurial behaviours. Edward Elgar Publishing, CheltenhamCrossRefGoogle Scholar
  26. Morone A, Morone P, Taylor R (2007) A laboratory experiment of knowledge diffusion dynamics. In: Canter U, Malerba F (eds) Innovation, industrial dynamics and structural transformation. Springer, Heidelberg, pp 283–302CrossRefGoogle Scholar
  27. Morone P, Taylor R (2004) Knowledge diffusion dynamics and network properties of face-to-face interactions. J Evol Econ 14(3):327–351CrossRefGoogle Scholar
  28. Mueller M, Buchmann T, Kudic M (2014) Micro strategies and macro patterns in the evolution of innovation networks-an agent-based simulation approach in simulating knowledge dynamics. In: Gilbert N, Ahrweiler P, Pyka A (eds) Innovation networks. Springer, Heidelberg, pp 73–95Google Scholar
  29. Nelson RR, Winter SG (1982) Belknap Press of Harvard University PressGoogle Scholar
  30. OECD (1996) The knowledge-based economy. General distribution OCDE/GD 96(102)Google Scholar
  31. Podolny JM (2001) Networks as the pipes and prisms of the market. Am J Sociol 7(1):33–60CrossRefGoogle Scholar
  32. Powell WW, Koput KW, Smith-Doerr L (1996) Interorganizational collaboration and the locus of innovation: networks of learning in biotechnology. Admin Sci Q 41(1):116–145CrossRefGoogle Scholar
  33. Powell WW, White DR, Koput KW, Owen-Smith J (2005) Network dynamics and field evolution: the growth of interorganizational collaboration in the life sciences. Am J Sociol 110(4):1132–1205CrossRefGoogle Scholar
  34. Powell WW, Grodal S (2005) Networks of innovators. In: Fagerberg J, Mowery DC, Nelson RR (eds) The Oxford handbook of innovation. Oxford University Press, Oxford, New York, pp 56–85Google Scholar
  35. Pyka A (1997) Informal networking. Technovation 17(4):207–220CrossRefGoogle Scholar
  36. Savin I, Egbetokun A (2016) Emergence of innovation networks from R&D cooperation with endogenous absorptive capacity. J Econ Dyn Control 64:82–103CrossRefGoogle Scholar
  37. Schilling MA, Phelps CC (2007) Interfirm collaboration networks: the impact of large-scale network structure on firm innovation. Manag Sci 53(7):1113–1126CrossRefGoogle Scholar
  38. Stuart TE (2000) Interorganizational alliances and the performance of firms: a study of growth and innovational rates in a high-technology industry. Strateg Manag J 21(8):791–811CrossRefGoogle Scholar
  39. Uzzi B, Amaral LA, Reed-Tsochas F (2007) Small-world networks and management science research: a review. Eur Manag Rev 4(2):77–91CrossRefGoogle Scholar
  40. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Matthias Mueller
    • 1
    Email author
  • Kristina Bogner
    • 1
  • Tobias Buchmann
    • 1
  • Muhamed Kudic
    • 2
    • 3
  1. 1.University of HohenheimStuttgartGermany
  2. 2.StifterverbandEssenGermany
  3. 3.University of BremenBremenGermany

Personalised recommendations