Journal of Economic Interaction and Coordination

, Volume 2, Issue 2, pp 111–124 | Cite as

Patterns of dominant flows in the world trade web

  • M. Ángeles SerranoEmail author
  • Marián Boguñá
  • Alessandro Vespignani
Original Article


The large-scale organization of the world economies is exhibiting increasing levels of local heterogeneity and global interdependency. Understanding the relation between local and global features calls for analytical tools able to uncover the global emerging organization of the international trade network. Here we analyze the world network of bilateral trade imbalances and characterize its overall flux organization, unraveling local and global high-flux pathways that define the backbone of the trade system. We develop a general procedure capable to progressively filter out in a consistent and quantitative way the dominant trade channels. This procedure is completely general and can be applied to any weighted network to detect the underlying structure of transport flows. The trade fluxes properties of the world trade web determine a ranking of trade partnerships that highlights global interdependencies, providing information not accessible by simple local analysis. The present work provides new quantitative tools for a dynamical approach to the propagation of economic crises.


Null Model World Trade Trade System Source Country Local Heterogeneity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeysinghe T and Forbes K (2005). Trade linkages and output-multiplier effects: a structural VAR approach with a focus on Asia. Rev Int Econ 13(2): 356–375 CrossRefGoogle Scholar
  2. Albert R and Barabási A-L (2002). Statistical mechanics of complex networks. Rev Modern Phys 74(1): 47–97 CrossRefGoogle Scholar
  3. Almaas E, Kovács B, Vicsek T, Oltvai ZN and Barabási A-L (2004). Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427: 839–843 CrossRefGoogle Scholar
  4. Barrat A, Barthélemy M, Pastor-Satorras R and Vespignani A (2004). The architecture of complex weighted networks. Proc Natl Acad Sci USA 101(11): 3747–3752 CrossRefGoogle Scholar
  5. Barthélemy M, Gondran B and Guichard E (2003). Spatial structure of the Internet traffic. Physica A 319: 633–642 CrossRefGoogle Scholar
  6. Baxter M and Kouparitsas M (2003). Trade structure, industrial structure and international business cycles. Am Econ Rev 93(2): 51–56 CrossRefGoogle Scholar
  7. Bergstrand JH (1985). The gravity equation in international trade: some microeconomic foundations and empirical evidence. Rev Econ Stat 67(3): 474–481 CrossRefGoogle Scholar
  8. Centeno MA, Cooke A, Curran SR (2006) NetMap combined studies, mapping globalization project. Princeton University, University of Washington, Princeton/WashingtonGoogle Scholar
  9. Derrida B and Flyvbjerg H (1987). Statistical properties of randomly broken objects and of multivalley structures in disordered systems. J Phys A 20: 5273–5288 CrossRefGoogle Scholar
  10. Dorogovtsev SN and Mendes JFF (2003). Evolution of networks: from biological nets to the Internet and WWW. Oxford University Press, Oxford Google Scholar
  11. Forbes K (2002) Are trade linkages important determinants of country vulnerability to crises? In: Sebastian~E, Jeffrey F (eds) Preventing Currency Crises in Emerging Markets. University of Chicago Press, Chicago, pp 77–124Google Scholar
  12. Garlaschelli D and Loffredo MI (2004). Fitness-dependent topological properties of the World Trade Web. Phys Rev Lett 93(18): 188701 CrossRefGoogle Scholar
  13. Garlaschelli D and Loffredo MI (2005). Structure and evolution of the world trade network. Physica A 355: 138–144 CrossRefGoogle Scholar
  14. Gleditsch KS (2002). Expanded Trade and GDP Data. J Conflict Resolut 46: 712–724 Google Scholar
  15. Glick R and Rose A (1999). Contagion and Trade: Why are Currency Crises Regional. J Int Money Finance 18: 603–627 CrossRefGoogle Scholar
  16. Goldstein M (1998). The Asian financial crisis: causes, cures and systemic implications. International Institute for Economics, Washington Google Scholar
  17. Helliwell JF, Padmore T (1985) In: Jones RW, Kenen PB (eds) Handbook of international economics, vol 2. Elsevier, North-Holland, AmsterdamGoogle Scholar
  18. Herfindahl OC (1959). Copper Costs and Prices: 1870–1957. John Hopkins University Press, Baltimore Google Scholar
  19. Hirschman AO (1964). The paternity of an index. Am Econ Rev 54: 761–762 Google Scholar
  20. Krempel L and Plümper T (1999). International division of labor and global economic processes: an analysis of the international trade in automobiles. J World Syst Res 5(3): 487–498 Google Scholar
  21. Krempel L and Plümper T (2003). Exploring the dynamics of international trade by combining the comparative advantages of multivariate statistics and network visualizations. J Soc Struct 4(1): 1–22 Google Scholar
  22. Krugman PR (1995). Growing world trade: causes and consequences. Brookings Pap Econ Act 1995(1): 327–377 CrossRefGoogle Scholar
  23. Krugman PR and Obstfeld M (2005). International economics: theory and Policy, 7th edn. Addison-Wesley, Lebanon Google Scholar
  24. Noland M, Liu L-G, Robinson S, Wang Z (1998) Global economics effects of the Asian currency devaluations. International Institute for Economics, WashingtonGoogle Scholar
  25. Serrano MA (2007) Phase transition in the globalization of trade. J Stat Mech 1:L01002Google Scholar
  26. Serrano MA, Boguñá M (2003) Topology of the world trade web. Phys Rev E 68:015101(R)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • M. Ángeles Serrano
    • 1
    Email author
  • Marián Boguñá
    • 2
  • Alessandro Vespignani
    • 3
    • 4
  1. 1.Institute of Theoretical PhysicsLausanneSwitzerland
  2. 2.Departament de Física FonamentalUniversitat de BarcelonaBarcelonaSpain
  3. 3.School of InformaticsIndiana UniversityBloomingtonUSA
  4. 4.Complex Network Lagrange Laboratory (CNLL)Institute for Scientific Interchange (ISI)TorinoItaly

Personalised recommendations