Chinese Annals of Mathematics, Series B

, Volume 40, Issue 1, pp 131–160 | Cite as

Sharp Threshold of Global Existence for a Nonlocal Nonlinear Schrödinger System in ℝ3

  • Zaihui GanEmail author
  • Xin Jiang
  • Jing Li


In this paper, the authors investigate the sharp threshold of a three-dimensional nonlocal nonlinear Schrödinger system. It is a coupled system which provides the mathematical modeling of the spontaneous generation of a magnetic field in a cold plasma under the subsonic limit. The main difficulty of the proof lies in exploring the inner structure of the system due to the fact that the nonlocal effect may bring some hinderance for establishing the conservation quantities of the mass and of the energy, constructing the corresponding variational structure, and deriving the key estimates to gain the expected result. To overcome this, the authors must establish local well-posedness theory, and set up suitable variational structure depending crucially on the inner structure of the system under study, which leads to define proper functionals and a constrained variational problem. By building up two invariant manifolds and then making a priori estimates for these nonlocal terms, the authors figure out a sharp threshold of global existence for the system under consideration.


Nonlocal nonlinear Schrödinger system Sharp threshold Blow-up Global existence 

2000 MR Subject Classification

35A15 35E55 35Q55 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors wish to thank annoymous referees for their constructive suggestions and helpful comments.


  1. [1]
    Berestycki, H., Gallouët, T. and Kavian, O., Equàtions de champs scalaires euclidiens nonlinéaires daus de plan, C. R. Acad. Sci. Paris., Serie I, 297, 1983, 307–310.zbMATHGoogle Scholar
  2. [2]
    Berestycki, H. and Cazenave, T., Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéairees, C. R. Acad. Sci. Paris, 293, 1981, 489–492.zbMATHGoogle Scholar
  3. [3]
    Cazenave, T., An Introduction to Nonlinear Schrodinger Equations (3rd Ed.), Textos de Metodos Matematicos, Universidade Federal do Rio de Janeiro, 1996.Google Scholar
  4. [4]
    Dendy, R. O., Plasma Dynamics, Oxford University Press, 1990.Google Scholar
  5. [5]
    Ginibre, J. and Ozawa, T., Long range scattering for nonlinear Schrödinger and Hartree equations in space dimensions n ≥ 2, Comm. Math. Phys., 151, 1993, 619–645.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Ginibre, J. and Velo, G., On a class of nonlinear Schrödinger equations I, The Cauchy problem, general case, J. Funct. Anal., 32, 1979, 1–32.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Ginibre, J. and Velo, G., The global Cauchy problem for the nonlinear Schrödinger equation revisited, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 2, 1985, 309–327.CrossRefzbMATHGoogle Scholar
  8. [8]
    Glassey, R. T., On the blowing up of solution to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18(9), 1977, 1794–1797.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Hayashi, N., Nakamitsu, K. and Tsutsumi, M., On solutions of the initial value problem for the nonlinear Schrödinger equations, J. Funct. Anal., 71, 1987, 218–245.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Hayashi, N. and Tsutsumi, Y., Scattering theory for Hartree type equations, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 46, 1987, 187–213.Google Scholar
  11. [11]
    Kato, T., On nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré,Physique Théorique, 49, 1987, 113–129.zbMATHGoogle Scholar
  12. [12]
    Kenig, C., Ponce, G. and Vega, L., Small solution to nonlinear Schrödinger equations, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 10, 1993, 255–288.CrossRefzbMATHGoogle Scholar
  13. [13]
    Kono, M., Skoric, M. M. and Ter Haar, D., Spontaneous excitation of magnetic fields and collapse dynamics in a Langmuir plasma, J. Plasma Phys., 26, 1981, 123–146.CrossRefGoogle Scholar
  14. [14]
    Laurey, C., The Cauchy problem for a generalized Zakharov system, Diffe. Integral Equ., 8(1), 1995, 105–130.MathSciNetzbMATHGoogle Scholar
  15. [15]
    Liu, Y., Existence and blow–up of solutions of a nonlinear Pochhammer–Chree equation, Indiana Univ. Math. J., 1996, 45, 797–816.MathSciNetzbMATHGoogle Scholar
  16. [16]
    Miao, C. X., Harmonic Analysis and Applications to Partial Differential Equations, 2nd edition, Monographs on Modern Pure Mathematics, No. 89, Science Press, Beijing, 2004.Google Scholar
  17. [17]
    Miao, C. X., The Modern Method of Nonlinear Wave Equations, Lectures in Contemporary Mathematics, No. 2., Science Press, Beijing, 2005.Google Scholar
  18. [18]
    Miao, C. X. and Zhang, B., Harmonic Analysis Method of Partial Differential Equations, 2 edition, Monographs on Modern Pure Mathematics, No. 117, Science Press, Beijing, 2008.Google Scholar
  19. [19]
    Nirenberg, L., On elliptic partial differential equations, Ann. della Scuola Norm. Sup. Pisa, 13, 1959, 115–162.MathSciNetzbMATHGoogle Scholar
  20. [20]
    Ozawa, T. and Tsutsumi, Y., Blow–up of H1 solution for the nonlinear Schrödinger equation, J. Diff. Eq., 92, 1991, 317–330.CrossRefGoogle Scholar
  21. [21]
    Ozawa, T. and Tsutsumi, Y., Blow–up of H1 solutions for the one–dimension nonlinear Schrödinger equation with critical power nonlinearity, Proc. A. M. S., 111, 1991, 486–496.Google Scholar
  22. [22]
    Strauss, W. A., Nonlinear Wave Equations, C. B. M. S., No. 73, Amer. Math. Soc., Providence, RI, 1989.Google Scholar
  23. [23]
    Weinstein, M. I., Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., 87, 1983, 567–576.CrossRefzbMATHGoogle Scholar
  24. [24]
    Zakharov, V. E., The collapse of Langmuir waves, Soviet Phys., JETP, 35, 1972, 908–914.Google Scholar
  25. [25]
    Zakharov, V. E., Musher, S. L. and Rubenchik, A. M., Hamiltonian approach to the description of nonlinear plasma phenomena, Physics Reports, 129(5), 1985, 285–366.MathSciNetCrossRefGoogle Scholar
  26. [26]
    Zhang, J., Sharp conditions of global existence for nonlinear Schrödinger and Klein–Gordon equations, Nonlinear Analysis, TMA, 48, 2002, 191–207.zbMATHGoogle Scholar
  27. [27]
    Zhang, J., Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potentia, Commun. in PDE, 30, 2005, 1429–1443.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Fudan University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Applied MathematicsTianjin UniversityTianjinChina
  2. 2.School of Preparatory EducationXinjiang Normal UniversityUrumqiChina

Personalised recommendations