Chinese Annals of Mathematics, Series B

, Volume 40, Issue 1, pp 111–116 | Cite as

Deformations on the Twisted Heisenberg-Virasoro Algebra

  • Dong Liu
  • Yufeng PeiEmail author


With the cohomology results on the Virasoro algebra, the authors determine the second cohomology group on the twisted Heisenberg-Virasoro algebra, which gives all deformations on the twisted Heisenberg-Virasoro algebra.


Cohomology Deformation Virasoro algebra Heisenberg algebra 

2000 MR Subject Classification

17B56 17B68 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Arbarello, E., De Concini, C., Kac, V. G. and Procesi, C., Moduli spaces of curves and representation theory, Comm. Math. Phys., 117, 1988, 1–36.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Billig, Y., Representations of the twisted Heisenberg–Virasoro algebra at level zero, Canad. Math. Bull., 46(4), 2003, 529–533.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Fialowski, A., Formal rigidity of the Witt and Virasoro algebra, J. Math. Phys., 53, 2012, 073501.Google Scholar
  4. [4]
    Fuks, D. B., Cohomology of Infinite–Dimensional Lie Algebras, Nauka, Moscow, 1984. (in Russian)zbMATHGoogle Scholar
  5. [5]
    Gao, S., Jiang, C. and Pei, Y., Low dimensional cohomology groups of the Lie algebras W(a, b), Commun. Alg., 39(2), 2011, 397–423.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Grozman, P. Ja., Classification of bilinear invariant operators on tensor fields, Functional Anal. Appl, 14(2), 1980, 127–128.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Guieu, L. and Roger, C., Algebra and the Virasoro Group, Geometric and Algebraic Aspects, Generalizations, Les Publications CRM, Montreal, QC, 2007.zbMATHGoogle Scholar
  8. [8]
    Guo, X., Lv, R. and Zhao, K., Simple Harish–Chandra modules, intermediate series modules, and Verma modules over the loop–Virasoro algebra, Forum Math., 23, 2011, 1029–1052.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Kaplansky, I. and Santharoubane, L. J., Harish–Chandra modules over the Virasoro algebra, Math. Sci. Res. Inst. Publ., Vol. 4, Springer–Verlag, New York, 1985.Google Scholar
  10. [10]
    Li, J. and Su, Y., Representations of the Schrödinger–Virasoro algebras, J. Math. Phys., 49, 2008, 053512.Google Scholar
  11. [11]
    Liu, D., Classification of Harish–Chandra modules over some Lie algebras related to the Virasoro algebra, J. Algebra, 447, 2016, 548–559.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Liu, D., Gao, S. and Zhu, L., Classification of irreducible weight modules over W–algebra W(2, 2), J. Math. Phys., 49(11), 2008, 113503.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Liu, D. and Jiang, C., Harish–Chandra modules over the twisted Heisenberg–Virasoro algebra, J. Math. Phys., 49(1), 2008, 012901.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Liu, D., Pei, Y. and Zhu, L., Lie bialgebra structures on the twisted Heisenberg–Virasoro algebra, J. Algebra, 359, 2012, 35–48.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Lv, R. and Zhao, K., Classification of irreducible weight modules over the twisted Heisenberg–Virasoro algebra, Commun. Contemp. Math. 12(2), 2010, 183–205MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Ng, S. H. and Taft, E. J., Classification of the Lie bialgebra structures on the Witt and Virasoro algebras, J. Pure Appl. Alg., 151, 2000, 67–88.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Ovsienko, V. Yu. and Rozhe, K., Extension of Virasoro group and Virasoro algebra by modules of tensor densities on S1, Functional Anal. Appl., 30, 1996, 290–291.MathSciNetCrossRefGoogle Scholar
  18. [18]
    Ovsienko, V. and Roger, C., Generalizations of the Virasoro group and Virasoro algebra through extensions by modules of tensor densities on S1, Indag. Math.(N.S.), 9(2), 1998, 277–288.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Qiu, S., The cohomology of the Virasoro algebra with coefficients in a basic Harish–Chandra modules, Northeastern Math. J., 5(1), 1989, 75–83.MathSciNetzbMATHGoogle Scholar
  20. [20]
    Roger, C. and Unterberger, J., The Schrödinger–Virasoro Lie group and algebra: From geometry to representation theory, Annales Henri Poincaré, 7, 2006, 1477–1529.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    Shen, R. and Jiang, C., The derivation algebra and automorphism group of the twisted Heisenberg–Virasoro algebra, Commun. Alg., 34, 2006, 2547–2558.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Zhang, W. and Dong, C., W–algebra W(2, 2) and the vertex operator algebra L 1 2,0, Commun. Math. Phys., 285(3), 2009, 991–1004.CrossRefzbMATHGoogle Scholar

Copyright information

© Fudan University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsHuzhou UniversityHuzhou, ZhejiangChina
  2. 2.Department of MathematicsShanghai Normal UniversityShanghaiChina

Personalised recommendations