Chinese Annals of Mathematics, Series B

, Volume 39, Issue 5, pp 889–916 | Cite as

Very Regular Solutions for the Landau-Lifschitz Equation with Electric Current

  • Gilles Carbou
  • Rida Jizzini


The authors consider a model of ferromagnetic material subject to an electric current, and prove the local in time existence of very regular solutions for this model in the scale of Hk spaces. In particular, they describe in detail the compatibility conditions at the boundary for the initial data.


Ferromagnetic materials Compatibility conditions Existence result 

2000 MR Subject Classification

35K55 35Q60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Alouges, F. and Soyeur, A., On global weak solutions for Landau-Lifshitz equations: Existence and nonuniqueness, Nonlinear Anal., 18(11), (1992), 1071–1084.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Aubin, T., Un théorème de compacité, C. R. Acad. Sci. Paris, 256, (1963), 5042–5044.MathSciNetzbMATHGoogle Scholar
  3. [3]
    Bonithon, G., Landau-Lifschitz-Gilbert equation with applied electric current, Discrete Contin. Dyn. Syst. 2007, Dynamical Systems and Differential Equations, Proceedings of the 6th AIMS International Conference, suppl., 138–144.Google Scholar
  4. [4]
    Boyer, F. and Fabrie, P., Eléments d’analyse pour l’étude de quelques modèles d’écoulements de fluides visqueux incompressibles, Mathématiques & Applications, 52, Springer-Verlag, Berlin, 2006.Google Scholar
  5. [5]
    Brown, W. F., Micromagnetics, Wiley, New York, 1963.zbMATHGoogle Scholar
  6. [6]
    Carbou, G. and Fabrie, P., Time average in micromagnetism, J. Differential Equations, 147(2), (1998), 383–409.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Carbou, G. and Fabrie, P., Regular solutions for Landau-Lifschitz equations in a bounded domain, Differential Integral Equations, 14, (2001), 213–229.MathSciNetzbMATHGoogle Scholar
  8. [8]
    Carbou, G., Fabrie, P. and Guès, O., On the ferromagnetism equations in the non static case, Commun. Pure Appl. Anal., 3(3), (2004), 367–393.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Foias, G. and Temam, R., Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation, An. Sc. Norm. Super. Pisa IV, 5, (1978), 29–63.zbMATHGoogle Scholar
  10. [10]
    Ladyzhenskaya, O. A., The boundary value problem of mathematical physics, Applied Math. Sciences, 49, Springer-Verlag, New York, 1985.Google Scholar
  11. [11]
    Landau, L. and Lifschitz, E., Electrodynamique des milieux continues, cours de physique théorique, Tome VIII, Mir (ed.), Moscou, 1969.Google Scholar
  12. [12]
    Simon, J., Compact sets in the space L p(0, T;B), Ann. Mat. Pura Appl., 146(4), (1987), 65–96.MathSciNetzbMATHGoogle Scholar
  13. [13]
    Thiaville, A., Nakatani, Y., Miltat, J. and Susuki, Y., Micromagnetic understanding of current driven domain wall motion in patterned nanowires, Europhys. Lett., 69(6), (2005), 990–996.CrossRefGoogle Scholar
  14. [14]
    Thiaville, A., Nakatani, Y., Miltat, J. and Vernier, N., Domain wall motion by spin-polarized current: A micromagnetic study, J. Appl. Phys., Part 2, 95(11), (2004), 7049–7051.CrossRefGoogle Scholar
  15. [15]
    Thiaville, A., Garcia, J. M. and Miltat, J., Domain wall dynamics in nanowires, Journal of Magnetism and Magnetic Materials, 242-245, (2002), 1061–1063.CrossRefGoogle Scholar
  16. [16]
    Visintin, A., On Landau Lifschitz equation for ferromagnetism, Japan Journal of Applied Mathematics, 1(2), (1985), 69–84.CrossRefzbMATHGoogle Scholar

Copyright information

© Fudan University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques Appliquées de Pau, UMR CNRS 5142Université de Pau et des Pays de l’AdourPau CedexFrance
  2. 2.Institut de Mathématiques de Bordeaux, UMR CNRS 5251Université de BordeauxTalence CedexFrance

Personalised recommendations