Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Long-time turbulence model deduced from the Navier-Stokes equations

Abstract

The author shows the existence of long-time averages to turbulent solutions of the Navier-Stokes equations and determines the equations satisfied by them, involving a Reynolds stress that is shown to be dissipative.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Amrouche, C. and Girault, V., On the existence and regularity of the solutions of Stokes problem in arbitrary dimension, Proc. Japan Acad., 67(5), 1991, 171–175.

  2. [2]

    Batchelor, G. K., An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 1967.

  3. [3]

    Boussinesq, J., Essai sur la théorie des eaux courantes, Mémoires Présentés par Divers Savants à l’Académie des Sciences, 23(1), 1877, 1–660.

  4. [4]

    Caffarelli, L., Kohn, R. and Nirenberg, L., Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35(5–6), 1982. 771–831.

  5. [5]

    Chácon Rebollo, T. and Lewandowski, R., Mathematical and Numerical Foundations of Turbulence Models and Applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, Basel; Springer-Verlag, New York, 2014.

  6. [6]

    Hopf, E., Ber die Anfangswertaufgabe fr die hydrodynamischen Grundgleichungen, Math. Nachr., 4, 1951, 213–231 (in German).

  7. [7]

    Kolmogorov, A. N., The local structure of turbulence in incompressible viscous fluids for very large Reynolds number, Dokl. Akad. Nauk SSR, 30, 1941, 9–13.

  8. [8]

    Girault, V. and Raviart, P. A., Finite Element Approximation of the Navier-Stokes Equations, Springer-Verlag, Berlin, 1979.

  9. [9]

    Feireisl, E., Dynamics of Viscous Incompressible Fluids, Oxford University Press, Oxford, 2004.

  10. [10]

    Layton, W., The 1877 Boussinesq conjecture: Turbulent fluctuation are dissipative on the mean flow, 2014. to appear.

  11. [11]

    Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Mathematica, 63, 1934, 193–248.

  12. [12]

    Lions, J. L., Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969.

  13. [13]

    Prandtl, L., Über die ausgebildeten Turbulenz, Zeitschrift für Angewandte Mathematik und Mechanik, 5, 1925, 136–139 (in German).

  14. [14]

    Reynolds, O., An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels, Philosophical Transactions of the Royal Society, 174, 1883, 935–982.

  15. [15]

    Ruelle, D., Chance and Chaos, Princeton University Press, Princeton, 1991.

  16. [16]

    Sobolev, V. I., Bochner integral, Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer-Verlag, New York, 2001.

  17. [17]

    Stokes, G., On the effect of the internal friction of fluids on the motion of pendulums, Transactions of the Cambridge Philosophical Society, 9, 1851, 8–106.

  18. [18]

    Tartar, L., An introduction to Navier-Stokes equation and oceanography, Lecture Notes of the Unione Matematica Italiana, 1, Springer-Verlag, Berlin; UMI, Bologna, 2006.

  19. [19]

    Tartar, L., An introduction to Sobolev spaces and interpolation spaces, Lecture Notes of the Unione Matematica Italiana, 3, Springer-Verlag, Berlin; UMI, Bologna, 2007.

  20. [20]

    Taylor, G. I., Statistical theory of turbulence, Part I-IV, Proc. Roy. Soc. A., 151, 1935, 421–478.

  21. [21]

    Temam, R., Navier-Stokes Equations, Theory and Numerical Analysis, Reprint of the 1984 Edition, A. M. S. Chelsea Publishing, Providence, RI, 2001.

Download references

Author information

Correspondence to Roger Lewandowski.

Additional information

In Honor of the Scientific Contributions of Professor Luc Tartar

This work was supported by ISFMA, Fudan University, China, and CNRS, France.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lewandowski, R. Long-time turbulence model deduced from the Navier-Stokes equations. Chin. Ann. Math. Ser. B 36, 883–894 (2015). https://doi.org/10.1007/s11401-015-0982-9

Download citation

Keywords

  • Navier-Stokes equations
  • Weak solutions
  • Turbulence modeling
  • Reynolds stress

2000 MR Subject Classification

  • 35Q30
  • 76D05
  • 76D06
  • 76F05