Chinese Annals of Mathematics, Series B

, Volume 36, Issue 5, pp 737–762

Identifiability and stability of an inverse problem involving a Fredholm equation

  • Carlos Conca
  • Rodrigo Lecaros
  • Jaime H. Ortega
  • Lionel Rosier
Article
  • 77 Downloads

Abstract

The authors study a linear inverse problem with a biological interpretation, which is modelled by a Fredholm integral equation of the first kind, where the kernel is represented by step functions. Based on different assumptions, identifiability, stability and reconstruction results are obtained.

Keywords

Inverse problems Olfactory system Kernel determination Fredholm integral equation Partial differential equations Numerical reconstruction 

2000 MR Subject Classification

35R20 45B05 45Q05 65M32 93B05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Evans, L. C. and Gariepy, R. F., Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, Ann Arbor, London, 1992.MATHGoogle Scholar
  2. [2]
    Flannery, R., French, D. A. and Kleene, S. J., Clustering of CNG channels in grass frog olfactory cilia, Biophysical J., 91, 2005, 179–188.CrossRefGoogle Scholar
  3. [3]
    French, D. A. and Edwards, D. A., Perturbation approximation of solutions of a nonlinear inverse problem arising in olfaction experimentation, J. Math. Biol., 55, 2007, 745–765.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    French, D. A., Flannery, R. J., Groetsch, C. W., et al., Numerical approximation of solutions of a nonlinear inverse problem arising in olfaction experimentation, Mathematical and Computer Modelling, 43, 2006, 945–956.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    French, D. A. and Groetsch, C. W., Integral equation models for the inverse problem of biological ion channel distributions, Journal of Physics: Conference Series, 73(012006), 2007, 1742–6596.Google Scholar
  6. [6]
    Kleene, S. J., Origin of the chloride current in olfactory transduction, Neuron, 11, 1993, 123–132.CrossRefGoogle Scholar
  7. [7]
    Kleene, S. J. and Gesteland, R. C., Calcium-activated chloride conductance in frog olfactory cilia, J. Neurosci., 11, 1991, 3624–3629.Google Scholar
  8. [8]
    Kleene, S. J. and Gesteland, R. C., Transmembrane currents in frog olfactory cilia, J. Membr. Biol., 120, 1991, 75–81.CrossRefGoogle Scholar
  9. [9]
    Kleene, S. J., Gesteland, R. C. and Bryant, S. H., An electrophysiological survey of frog olfactory cilia, J. Exp. Biol., 195, 1994, 307–328.Google Scholar
  10. [10]
    Titchmarsh, E. C., Introduction to the Theory of Fourier Integrals, Clarendon Press, Oxford, 1937.Google Scholar

Copyright information

© Fudan University and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Carlos Conca
    • 1
  • Rodrigo Lecaros
    • 1
  • Jaime H. Ortega
    • 1
  • Lionel Rosier
    • 2
  1. 1.Centro de Modelamiento Matemático and Departamento de Ingeniería MatemáticaUniversidad de Chile (UMI CNRS 2807)SantiagoChile
  2. 2.Centre Automatique et Systèmes, MINES ParisTechPSL Research UniversityParisFrance

Personalised recommendations