Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Symmetric q-deformed KP hierarchy


Based on the analytic property of the symmetric q-exponent e q (x), a new symmetric q-deformed Kadomtsev-Petviashvili (q-KP for short) hierarchy associated with the symmetric q-derivative operator q is constructed. Furthermore, the symmetric q-CKP hierarchy and symmetric q-BKP hierarchy are defined. The authors also investigate the additional symmetries of the symmetric q-KP hierarchy.

This is a preview of subscription content, log in to check access.


  1. [1]

    Klimyk, A. and Schmüdgen, K., Quantum Groups and Their Represntaions, Springer-Verlag, Berlin, 1997.

  2. [2]

    Kac, V. and Cheung, P., Quantum Calculus, Springer-Verlag, New York, 2002.

  3. [3]

    Frenkel, E., Deformations of the KdV hierarchy and related soliton equations, Int. Math. Res. Not., 2, 1996, 55–76.

  4. [4]

    Zhang, D. H., Quantum deformation of KdV hierarchies and their infinitely many conservation laws, J. Phys. A, 26, 1993, 2389–2407.

  5. [5]

    Wu, Z. Y., Zhang, D. H. and Zheng, Q. R., Quantum deformation of KdV hierarchies and their exact solutions: q-Deformed solitons, J. Phys. A, 27, 1994, 5307–5312.

  6. [6]

    Khesin, B., Lyubashenko, V. and Roger, C., Extensions and contractions of the Lie algebra of q-pseudodifferential symbols on the circle, J. Funct. Anal., 143, 1997, 55–97.

  7. [7]

    Tsuboi, Z. and Kuniba, A., Solutions of a discretized Toda field equation for D r from analytic Bethe ansatz, J. Phys. A, 29, 1996, 7785–7796.

  8. [8]

    Iliev, P., q-KP hierarchy, bispectrality and Calogero-Moser systems, J. Geom. Phys., 35, 2000, 157–182.

  9. [9]

    Mas, J. and Seco, M., The algebra of q-pseudodifferential symbols and the q-W KP (n) algebra, J. Math. Phys., 37, 1996, 6510–6529.

  10. [10]

    Iliev, P., Solutions to Frenkel’s deformation of the KP hierarchy, J. Phys. A, 31, 1998, 241–244.

  11. [11]

    Iliev, P., Tau function solutions to a q-deformation of the KP hierarchy, Lett. Math. Phys., 44, 1998, 187–200.

  12. [12]

    Tu, M. H., q-Deformed KP hierarchy: Its additional symmetries and infinitesimal Bäcklund transformations, Lett. Math. Phys., 49, 1999, 95–103.

  13. [13]

    He, J. S., Li, Y. H. and Cheng, Y., q-Deformed KP hierarchy and q-Deformed constrained KP hierarchy, Symmetry Integrability Geom. Methods Appl., 2, 2006, 32 pages.

  14. [14]

    Tian, K. L., He, J. S., Su, Y. C. and Cheng, Y., String equations of the q-KP hierarchy, Chin. Ann. Math., 32B(6), 2011, 895–904.

  15. [15]

    Tian, K. L., He, J. S. and Cheng, Y., Virasoro and W-constraints for the q-KP hierarchy, AIP Conf. Proc., 1212, 2010, 35–42.

  16. [16]

    Lin, R. L., Liu, X. J. and Zeng, Y. B., A new extended q-deformed KP hierarchy, J. Nonl. Math. Phys., 15, 2008, 333–347.

  17. [17]

    Lin, R. L., Peng, H. and Manas, M., The q-deformed mKP hierarchy with self-consistent sources, Wronskian solutions and solitons, J. Phys. A, 43, 2010, 434022, 17 pages.

  18. [18]

    Date, E., Kashiwara, M., Jimbo, M. and Miwa, T., KP hierarchy of orthogonal symplectic type, J. Phys. Soc. Japan, 50, 1981, 3813–3818.

  19. [19]

    Date, E., Kashiwara, M., Jimbo, M. and Miwa, T., Transformation Groups for Soliton Equations, Nonlinear Integrable Systems-Classical and Quantum Theory, Jimbo M. and Miwa T. (eds.), World Scientific, Singapore, 1983, 39–119.

  20. [20]

    Dickey, L. A., Soliton Equations and Hamiltonian Systems, 2nd ed., World Scintific, Singapore, 2003.

Download references

Author information

Correspondence to Jingsong He.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11201451, 11271210, 11371278, 11431010), the Erasmus Mundus Action 2 EXPERTS, the SMSTC grant (No. 12XD1405000) and Fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tian, K., He, J. & Su, Y. Symmetric q-deformed KP hierarchy. Chin. Ann. Math. Ser. B 36, 1–10 (2015).

Download citation


  • q-Derivative
  • Symmetric q-KP hierarchy
  • Additional symmetries

2000 MR Subject Classification

  • 35Q53
  • 37K05
  • 37K10