Advertisement

Chinese Annals of Mathematics, Series B

, Volume 35, Issue 3, pp 399–428 | Cite as

Tensor tomography: Progress and challenges

  • Gabriel P. PaternainEmail author
  • Mikko Salo
  • Gunther Uhlmann
Article

Abstract

The authors survey recent progress in the problem of recovering a tensor field from its integrals along geodesics. Several open problems are also proposed.

Keywords

Inverse problem Integral geometry Tensor tomography 

2000 MR Subject Classification

35R30 53C65 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ainsworth, G., The attenuated magnetic ray transform on surfaces, Inverse Probl. Imaging, 7, 2013, 27–46.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    Alexandrova, I., Structure of the semi-classical amplitude for general scattering relations, Comm. PDE, 30, 2005, 1505–1535.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    Anikonov, Yu. and Romanov, V., On uniqueness of determination of a form of first degree by its integrals along geodesics, J. Inverse Ill-Posed Probl., 5, 1997, 467–480.MathSciNetGoogle Scholar
  4. [4]
    Assylbekov, Y. and Dairbekov, N., The X-ray transform on a general family of curves on Finsler surfaces, preprint, 2012. arXiv: 1204.4383Google Scholar
  5. [5]
    Bal, G., Ray transforms in hyperbolic geometry, J. Math. Pures Appl., 84, 2005, 1362–1392.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    Boman, J. and Strömberg, J.-O., Novikov’s inversion formula for the attenuated Radon transform — a new approach, J. Geom. Anal., 14, 2004, 185–198.CrossRefMathSciNetGoogle Scholar
  7. [7]
    Burago, D. and Ivanov, S., Riemannian tori without conjugate points are flat, Geom. Funct. Anal., 4, 1994, 259–269.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    Croke, C. and Sharafutdinov, V. A., Spectral rigidity of a compact negatively curved manifold, Topology, 37, 1998, 1265–1273.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    Dairbekov, N. S., Integral geometry problem for nontrapping manifolds, Inverse Problems, 22, 2006, 431–445.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    Dairbekov, N. S., Paternain, G. P., Stefanov, P., et al., The boundary rigidity problem in the presence of a magnetic field, Adv. Math., 216, 2007, 535–609.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    Dairbekov, N. S. and Sharafutdinov, V. A., Some problems of integral geometry on Anosov manifolds, Ergodic Theory and Dynamical Systems, 23, 2003, 59–74.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    Dairbekov, N. S. and Uhlmann, G., Reconstructing the metric and magnetic field from the scattering relation, Inverse Probl. Imaging, 4, 2010, 397–409.CrossRefzbMATHMathSciNetGoogle Scholar
  13. [13]
    Dos Santos Ferreira, D., Kenig, C. E., Salo, M., et al., Limiting Carleman weights and anisotropic inverse problems, Invent. Math., 178, 2009, 119–171.CrossRefzbMATHMathSciNetGoogle Scholar
  14. [14]
    Eskin, G., On non-abelian Radon transform, Russ. J. Math. Phys., 11, 2004, 391–408.zbMATHMathSciNetGoogle Scholar
  15. [15]
    Finch, D., The attenuated X-ray transform: recent developments, Inside Out: Inverse Problems and Applications, G. Uhlmann (ed.), MSRI Publications, 47, Cambridge University Press, Cambridge, 2003, 47–66.Google Scholar
  16. [16]
    Finch, D. and Uhlmann, G., The X-ray transform for a non-abelian connection in two dimensions, Inverse Problems, 17, 2001, 695–701.CrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    Griffiths, P. and Harris, J., Principles of Algebraic Geometry, Reprint of the 1978 original Wiley Classics Library, John Wiley & Sons, New York, 1994.Google Scholar
  18. [18]
    Guillemin, V., Sojourn times and asymptotic properties of the scattering matrix, Proceedings of the Oji Seminar on Algebraic Analysis and the RIMS Symposium on Algebraic Analysis (Kyoto Univ., Kyoto, 1976), Publ. Res. Inst. Math. Sci., 12(supplement), 1976/77, 69–88.CrossRefMathSciNetGoogle Scholar
  19. [19]
    Guillemin, V. and Kazhdan, D., Some inverse spectral results for negatively curved 2-manifolds, Topology, 19, 1980, 301–312.CrossRefzbMATHMathSciNetGoogle Scholar
  20. [20]
    Helgason, S., The Radon Transform, 2nd edition, Birkhäuser, Boston, 1999.CrossRefzbMATHGoogle Scholar
  21. [21]
    Hörmander, L., The Analysis of Linear Partial Differential Operators, IV, Fourier Integral Operators, Reprint of the 1994 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2009.CrossRefzbMATHGoogle Scholar
  22. [22]
    Katok, A. and Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems (With a supplementary chapter by Katok and Leonardo Mendoza), Encyclopedia of Mathematics and Its Applications, 54, Cambridge University Press, Cambridge, 1995.Google Scholar
  23. [23]
    Krishnan, V., A support theorem for the geodesic ray transform on functions, J. Fourier Anal. Appl., 15, 2009, 515–520.CrossRefzbMATHMathSciNetGoogle Scholar
  24. [24]
    Krishnan, V., On the inversion formulas of Pestov and Uhlmann for the geodesic ray transform, J. Inverse Ill-posed Probl., 18, 2010, 401–408.CrossRefzbMATHMathSciNetGoogle Scholar
  25. [25]
    Krishnan, V. and Stefanov, P., A support theorem for the geodesic ray transform of symmetric tensor fields, Inverse Problems and Imaging, 3, 2009, 453–464.CrossRefzbMATHMathSciNetGoogle Scholar
  26. [26]
    Michel, R., Sur la rigidité imposée par la longueur des géodésiques, Invent. Math., 65, 1981, 71–83.CrossRefzbMATHMathSciNetGoogle Scholar
  27. [27]
    Mukhometov, R. G., The reconstruction problem of a two-dimensional Riemannian metric, and integral geometry (in Russian), Dokl. Akad. Nauk SSSR, 232(1), 1977, 32–35.MathSciNetGoogle Scholar
  28. [28]
    Novikov, R., An inversion formula for the attenuated X-ray transformation, Ark. Mat., 40, 2002, 145–167.CrossRefzbMATHMathSciNetGoogle Scholar
  29. [29]
    Novikov, R., On determination of a gauge field on ℝd from its non-abelian Radon transform along oriented straight lines, J. Inst. Math. Jussieu, 1, 2002, 559–629.CrossRefzbMATHMathSciNetGoogle Scholar
  30. [30]
    Paternain, G. P., Inverse problems for connections, Inverse Problems and Applications: Inside Out II, G. Uhlmann (ed.), MSRI Publications, 60, Cambridge University Press, Cambridge, 2013.Google Scholar
  31. [31]
    Paternain, G. P., Transparent connections over negatively curved surfaces, J. Mod. Dyn., 3, 2009, 311–333.CrossRefzbMATHMathSciNetGoogle Scholar
  32. [32]
    Paternain, G. P., Salo, M. and Uhlmann, G., Tensor tomography on simple surfaces, Invent. Math., 193, 2013, 229–247.CrossRefzbMATHMathSciNetGoogle Scholar
  33. [33]
    Paternain, G. P., Salo, M. and Uhlmann, G., The attenuated ray transform for connections and Higgs fields, Geom. Funct. Anal., 22, 2012, 1460–1489.CrossRefzbMATHMathSciNetGoogle Scholar
  34. [34]
    Paternain, G. P., Salo, M. and Uhlmann, G., Spectral rigidity and inariant distributions on Anosov surfaces, preprint, 2012. arXiv: 1208.4943Google Scholar
  35. [35]
    Paternain, G. P., Salo, M. and Uhlmann, G., On the range of the attenuated ray transform for unitary connections, Int. Math. Res. Not., to appear, 2013. arXiv: 1302.4880Google Scholar
  36. [36]
    Pestov, L., Well-posedness Questions of the Ray Tomography Problems (in Russian), Siberian Science Press, Novosibirsk, 2003.Google Scholar
  37. [37]
    Pestov, L. and Sharafutdinov, V. A., Integral geometry of tensor fields on a manifold of negative curvature, Siberian Math. J., 29, 1988, 427–441.CrossRefzbMATHMathSciNetGoogle Scholar
  38. [38]
    Pestov, L. and Uhlmann, G., On characterization of the range and inversion formulas for the geodesic X-ray transform, Int. Math. Res. Not., 2004(80), 2004, 4331–4347.CrossRefzbMATHMathSciNetGoogle Scholar
  39. [39]
    Pestov, L. and Uhlmann, G., Two dimensional compact simple Riemannian manifolds are boundary distance rigid, Ann. Math., 161, 2005, 1089–1106.CrossRefMathSciNetGoogle Scholar
  40. [40]
    Ruggiero, R. O., On the creation of conjugate points, Math. Z., 208, 1991, 41–55.CrossRefzbMATHMathSciNetGoogle Scholar
  41. [41]
    Salo, M. and Uhlmann, G., The attenuated ray transform on simple surfaces, J. Diff. Geom., 88, 2011, 161–187.zbMATHMathSciNetGoogle Scholar
  42. [42]
    Sharafutdinov, V. A., Integral geometry of tensor fields, Inverse and Ill-Posed Problems Series. VSP, Utrecht, 1994.CrossRefGoogle Scholar
  43. [43]
    Sharafutdinov, V. A., Integral geometry of a tensor field on a surface of revolution, Siberian Math. J., 38, 1997, 603–620.CrossRefMathSciNetGoogle Scholar
  44. [44]
    Sharafutdinov, V. A., On an inverse problem of determining a connection on a vector bundle, J. Inverse and Ill-Posed Problems, 8, 2000, 51–88.CrossRefzbMATHMathSciNetGoogle Scholar
  45. [45]
    Sharafutdinov, V. A., A problem in integral geometry in a nonconvex domain, Siberian Math. J., 43, 2002, 1159–1168.CrossRefMathSciNetGoogle Scholar
  46. [46]
    Sharafutdinov, V. A., Variations of Dirichlet-to-Neumann map and deformation boundary rigidity of simple 2-manifolds, J. Geom. Anal., 17, 2007, 147–187.CrossRefzbMATHMathSciNetGoogle Scholar
  47. [47]
    Sharafutdinov, V. A., Skokan, M. and Uhlmann, G., Regularity of ghosts in tensor tomography, J. Geom. Anal., 15, 2005, 517–560.CrossRefMathSciNetGoogle Scholar
  48. [48]
    Singer, I. M. and Thorpe, J. A., Lecture notes on elementary topology and geometry, Reprint of the 1967 edition. Undergraduate Texts in Mathematics, Springer-Verlag, New York, Heidelberg, 1976.CrossRefzbMATHGoogle Scholar
  49. [49]
    Stefanov, P., A sharp stability estimate in tensor tomography, J. of Physics: Conference Series, Proceeding of the First International Congress of the IPIA, 124, 2008, 012007.Google Scholar
  50. [50]
    Stefanov, P. and Uhlmann, G., Rigidity for metrics with the same lengths of geodesics, Math. Res. Lett., 5, 1998, 83–96.CrossRefzbMATHMathSciNetGoogle Scholar
  51. [51]
    Stefanov, P. and Uhlmann, G., Stability estimates for the X-ray transform of tensor fields and boundary rigidity, Duke Math. J., 123, 2004, 445–467.CrossRefzbMATHMathSciNetGoogle Scholar
  52. [52]
    Stefanov, P. and Uhlmann, G., Boundary rigidity and stability for generic simple metrics, Journal Amer. Math. Soc., 18, 2005, 975–1003.CrossRefzbMATHMathSciNetGoogle Scholar
  53. [53]
    Stefanov, P. and Uhlmann, G., Integral geometry of tensor fields on a class of non-simple Riemannian manifolds, American J. Math., 130, 2008, 239–268.CrossRefzbMATHMathSciNetGoogle Scholar
  54. [54]
    Stefanov, P. and Uhlmann, G., The geodesic X-ray transform with fold caustics, Analysis and PDE, 5, 2012, 219–260.CrossRefzbMATHMathSciNetGoogle Scholar
  55. [55]
    Uhlmann, G., The Cauchy data and the scattering relation, Geometric Methods in Inverse Problems and PDE Control, IMA Publications, 137, 2003, 263–288.CrossRefMathSciNetGoogle Scholar
  56. [56]
    Uhlmann, G. and Vasy, A., The inverse problem for the local geodesic ray transform, preprint, 2012. arXiv: 1210.2084Google Scholar

Copyright information

© Fudan University and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Gabriel P. Paternain
    • 1
    Email author
  • Mikko Salo
    • 2
  • Gunther Uhlmann
    • 3
  1. 1.Department of Pure Mathematics and Mathematical StatisticsUniversity of CambridgeCambridgeUK
  2. 2.Department of Mathematics and StatisticsUniversity of JyväskyläJyväskyläFinland
  3. 3.Department of MathematicsUniversity of Washington and University of HelsinkiSeattleUSA

Personalised recommendations