Advertisement

Chinese Annals of Mathematics, Series B

, Volume 35, Issue 1, pp 51–68 | Cite as

Quasi-sure flows associated with vector fields of low regularity

  • Siyan Xu
  • Hua ZhangEmail author
Article
  • 29 Downloads

Abstract

The authors construct a solution U t (x) associated with a vector field on the Wiener space for all initial values except in a 1-slim set and obtain the 1-quasi-sure flow property where the vector field is a sum of a skew-adjoint operator not necessarily bounded and a nonlinear part with low regularity, namely one-fold differentiability. Besides, the equivalence of capacities under the transformations of the Wiener space induced by the solutions is obtained.

Keywords

Quasi-sure flows Abstract Wiener space Low regularity 

2000 MR Subject Classification

60H07 60H20 60H30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ambrosio, L. and Figalli, A., On flows associated to Sobolev vector fields in Wiener space: an approach à la Di Perna-Lions, J. Funct. Anal., 256(1), 2009, 179–214.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    Bogachev, V. I., Gaussian Measures, Mathematical Suverys and Monographs, 62, American Mathematical Society, Providence, RI, 1998.CrossRefGoogle Scholar
  3. [3]
    Cruzeiro, A. B., Équations différentielles sur l’espace de Wiener et formules de Cameron-Martin nonlin éaires, J. Funct. Anal., 54, 1983, 206–227.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    Cruzeiro, A. B., Unicité de solutions d’équations différentielles sur l’espace de Wiener, J. Funct. Anal., 58, 1984, 335–347.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    Denis, L., Quasi-sure analysis related to sub-Markovian semi-group, Potential Anal., 6, 1997, 289–311.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    Gross, L., Abstract Wiener spaces, in“Proc. Fifth Berkeley Sympos. Math. Statist. and Prob.”, University of California Press, Berkeley, CA, 1 (1), 1965, 31–42.Google Scholar
  7. [7]
    Huang, Z. Y. and Yan, J. A., Introduction to Infinite Dimensional Stochastic Analysis, Monographs in Pure and Appl. Mathematics, Chinese Academic Press, Beijing, 37, 1997 (in Chinese).Google Scholar
  8. [8]
    Kusuoka, S., Analysis on Wiener space. I. Nonlinear maps, J. Funct. Anal., 98, 1998, 122–168.CrossRefMathSciNetGoogle Scholar
  9. [9]
    Malliavin, P. and Nualart, D., Quasi-sure analysis and Stratonovich anticipative stochastic differential equations, Probab. Theory Relat. Fields, 78, 1993, 45–55.CrossRefMathSciNetGoogle Scholar
  10. [10]
    Malliavin, P., Stochastic Analysis, Grund. Math. Wissen., 313, Springer-Verlag, Berlin, 1997.CrossRefGoogle Scholar
  11. [11]
    Peters, G., Anticipating flows on the Wiener space generated by vector fields of low regularity, J. Funct. Anal., 142, 1996, 129–192.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    Ren, J. G., Analyse quasi-sûre des équations différentielles stochastiques, Bull. Sci. Math. II. Sér., 114, 1990, 187–213.zbMATHGoogle Scholar
  13. [13]
    Shigekawa, I., Sobolev spaces of Banach valued functions associated with a Markov processes, Probab. Theory Relat. Fields, 99, 1994, 425–441.CrossRefzbMATHMathSciNetGoogle Scholar
  14. [14]
    Yun, Y. S., The quasi-sure existence of solutions for differential equations on Wiener space, J. Kyoto. Univ., 34(4), 1994, 767–796.zbMATHGoogle Scholar
  15. [15]
    Yun, Y. S., A quasi-sure flow property and the equivalence of capacities for differential equations on the Wiener space, J. Funct. Anal., 137, 1996, 381–393.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Fudan University and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Faculty of SciencesNingbo UniversityNingboZhejiang, China
  2. 2.School of StatisticsJiangxi University of Finance and EconomicsNanchangChina

Personalised recommendations