Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Explicit traveling wave solutions to nonlinear evolution equations

  • 88 Accesses

  • 2 Citations

Abstract

First of all, some technical tools are developed. Then the author studies explicit traveling wave solutions to nonlinear dispersive wave equations, nonlinear dissipative dispersive wave equations, nonlinear convection equations, nonlinear reaction diffusion equations and nonlinear hyperbolic equations, respectively.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Benton, E. R. and Platzman, G. W., A table of solutions of the one-dimensional Burgers equation, Quart. Appl. Math., 30, 1972, 195–212.

  2. [2]

    Bikbaev, R. F., Shock waves in the modified Korteweg-de Vries-Burgers equation, J. Nonlinear Sci., 5, 1995, 1–10.

  3. [3]

    Bona, J. L. and Schonbek, M. E., Travelling-wave solutions to the Korteweg-de Vries-Burgers equation, Proc. Roy. Soc. Edinburgh Sect. A, 101, 1985, 207–226.

  4. [4]

    Chakravarty, S. and Kodama, Y., Soliton solutions of the KP equation and application to shallow water waves, Stud. Appl. Math., 123, 2009, 83–151.

  5. [5]

    Chen, M., Nguyen, N. V. and Sun, S. M., Solitary-wave solutions to Boussinesq systems with large surface tension, Discrete Contin. Dyn. Syst., 26, 2010, 1153–1184.

  6. [6]

    Chen, Y., Yan, Z. Y. and Zhang, H., New explicit solitary wave solutions for (2+1)-dimensional Boussinesq equation and (3 + 1)-dimensional KP equation, Phys. Lett. A, 307, 2003, 107–113.

  7. [7]

    Chung, K. W. and Yuan, X. P., Periodic and quasi-periodic solutions for the complex Ginzburg-Landau equation, Nonlinearity, 21, 2008, 435–451.

  8. [8]

    David, C., Fernando, R. and Feng, Z. S., On solitary wave solutions of the compound Burgers-Korteweg-de Vries equation, Phys. A, 375, 2007, 44–50.

  9. [9]

    Feng, Z. S., Exact solutions to the Burgers-Korteweg-de Vries equation, J. Phys. Soc. Japan, 71, 2002, 1–4.

  10. [10]

    Feng, Z. S., Exact solution to an approximate Sine-Gordon equation in (n + 1)-dimensional space, Phys. Lett. A, 302, 2002, 64–76.

  11. [11]

    Feng, Z. S., Travelling wave solutions and proper solutions to the two-dimensional Burgers-Korteweg-de Vries equation, J. Phys. A, 36, 2003, 8817–8827.

  12. [12]

    Feng, Z. S., On traveling wave solutions to modified Burgers-Korteweg-de Vries equation, Phys. Lett. A, 318, 2003, 522–525.

  13. [13]

    Feng, Z. S., An exact solution to the Korteweg-de Vries-Burgers equation, Appl. Math. Lett., 18, 2005, 733–737.

  14. [14]

    Feng, Z. S., On travelling wave solutions of the Burgers-Korteweg-de Vries equation, Nonlinearity, 20, 2007, 343–356.

  15. [15]

    Feng, Z. S., Traveling wave behavior for a generalized Fisher equation, Chaos Solitons Fractals, 38, 2008, 481–488.

  16. [16]

    Feng, Z. S. and Meng, Q. G., Burgers-Korteweg-de Vries equation and its traveling solitary waves, Sci. China Ser. A, 50, 2007, 412–422.

  17. [17]

    Geng, F. Z. and Cui, M. G., The representations of exact solution of the compound Burgers-Korteweg-de Vries equation, Int. J. Evol. Equ., 3, 2008, 133–145.

  18. [18]

    Hoenselaers, C., Solutions of the hyperbolic Sine-Gordon equations, Internat. J. Theoret. Phys., 46, 2007, 1096–1099.

  19. [19]

    Huang, Y. and Dai, Z. D., Exact solitary wave solutions for a cubic 2D Ginzburg-Landau equation, Far East J. Dyn. Syst., 11, 2009, 95–105.

  20. [20]

    Ibrahim, S., Majdoub, M. and Masmoudi, N., Global solutions for a semilinear, two-dimensional Klein-Gordon equation with exponential-type nonlinearity, Comm. Pure Appl. Math., 59, 2006, 1639–1658.

  21. [21]

    Jacobs, D., McKinney, B. and Shearer, M., Travelling wave solutions of the modified Korteweg-de Vries-Burgers equation, J. Differential Equations, 116, 1995, 448–467.

  22. [22]

    Jang, B., New exact travelling wave solutions of nonlinear Klein-Gordon equations, Chaos Solitons Fractals, 41, 2009, 646–654.

  23. [23]

    Jeffrey, A. and Xu, S. Q., Exact solutions to the Korteweg-de Vries-Burgers equation, Wave Motion, 11, 1989, 559–564.

  24. [24]

    Lenells, J. and Fokas, A. S., On a novel integrable generalization of the Sine-Gordon equation, J. Math. Phys., 51, 2010, 023519, 20 pages.

  25. [25]

    Lewicka, M. and Mucha, P. B., On the existence of traveling waves in the 3D Boussinesq system, Comm. Math. Phy., 292, 2009, 417–429.

  26. [26]

    Liu, C. F. and Dai, Z. D., Exact periodic solitary wave solutions for the (2 + 1)-dimensional Boussinesq equation, J. Math. Anal. Appl., 367, 2010, 444–450.

  27. [27]

    Liu, S. D., Liu, S. K. and Ye, Q. X., Explicit traveling wave solutions of nonlinear evolution equations (in Chinese), Math. Practice Theory, 28, 1998, 289–301.

  28. [28]

    Ma, W. X., An exact solution to two-dimensional Korteweg-de Vries-Burgers equation, J. Phys. A, 26, 1993, L17–L20.

  29. [29]

    Matsuno, Y., A direct method for solving the generalized Sine-Gordon equation, J. Phys. A, 43, 2010, 105204, 28 pages.

  30. [30]

    Parkes, E. J., Exact solutions to the two-dimensional Korteweg-de Vries-Burgers equation, J. Phys. A, 27, 1994, L497–L501.

  31. [31]

    Rinzel, J. and Keller, J. B., Traveling wave solutions of a nerve conduction equation, Biophysics J., 13, 1973, 1313–1337.

  32. [32]

    Sahu, B. and Roychoudhury, R., Travelling wave solution of Korteweg-de Vries-Burger’s equation, Czechoslovak J. Phys., 53, 2003, 517–527.

  33. [33]

    Shen, J. W., Shock wave solutions of the compound Burgers-Korteweg-de Vries equation, Appl. Math. Comput., 196, 2008, 842–849.

  34. [34]

    Sirendaoreji, Exact solutions of the two-dimensional Burgers equation, J. Phys. A, 32, 1999, 6897–6900.

  35. [35]

    Sirendaoreji, Exact travelling wave solutions for four forms of nonlinear Klein-Gordon equations, Phys. Lett. A, 363, 2007, 440–447.

  36. [36]

    Wang, M. X., Xiong, S. L. and Ye, Q. X., Explicit wave front solutions of Noyes-Field systems for the Belousov-Zhabotinskii reaction, J. Math. Anal. Appl., 182, 1994, 705–717.

  37. [37]

    Wang, X. Y., Exact solitary wave solutions of the generalized Fisher equation, Chinese Sci. Bull., 34, 1989, 106–109.

  38. [38]

    Wang, Z. and Zhang, H. Q., Many new kinds exact solutions to (2 +1)-dimensional Burgers equation and Klein-Gordon equation used a new method with symbolic computation, Appl. Math. Comput., 186, 2007, 693–704.

  39. [39]

    Ye, Q. X. and Li, Z. Y., Introduction to Reaction-Diffusion Equations, Foundations of Modern Mathematics Series, Science Press, Beijing, 1990.

  40. [40]

    Zaki, S. I., Solitary waves of the Korteweg-de Vries-Burgers’ equation, Comput. Phys. Comm., 126, 2000, 207–218.

  41. [41]

    Zayko, Y. N. and Nefedov, I. S., New class of solutions of the Korteweg-de Vries-Burgers equation, Appl. Math. Lett., 14, 2001, 115–121.

  42. [42]

    Zhang, J. L., Wang, M. L. and Gao, K. Q., Exact solutions of generalized Zakharov and Ginzburg-Landau equations, Chaos Solitons Fractals, 32, 2007, 1877–1886.

  43. [43]

    Zhang, L. H., Traveling waves arising from synaptically coupled neuronal networks, Advances in Mathematics Research, Vol. 10, Nova Science Publishers Inc., New York, 2010, 53–204.

  44. [44]

    Zheng, Y. and Lai, S. Y., A study on three types of nonlinear Klein-Gordon equations, Dyn. Contin. Discrete Impuls. Syst., Ser. B Appl. Algorithms, 16, 2009, 271–279.

  45. [45]

    Zhong, P. H., Yang, R. H. and Yang, G. S., Exact periodic and blow up solutions for 2D Ginzburg-Landau equation, Phys. Lett. A, 373, 2008, 19–22.

Download references

Author information

Correspondence to Linghai Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, L. Explicit traveling wave solutions to nonlinear evolution equations. Chin. Ann. Math. Ser. B 32, 929 (2011). https://doi.org/10.1007/s11401-011-0674-z

Download citation

Keywords

  • Explicit traveling wave solutions
  • Nonlinear partial differential equations
  • Reduction of order

2000 MR Subject Classification

  • 35Q20