Advertisement

A characterization of counterexamples to the kodaira-ramanujam vanishing theorem on surfaces in positive characteristic

  • Qihong XieEmail author
Article

Abstract

The author gives a characterization of counterexamples to the Kodaira-Ramanujam vanishing theorem on smooth projective surfaces in positive characteristic. More precisely, it is reproved that if there is a counterexample to the Kodaira-Ramanujam vanishing theorem on a smooth projective surface X in positive characteristic, then X is either a quasi-elliptic surface of Kodaira dimension 1 or a surface of general type. Furthermore, it is proved that up to blow-ups, X admits a fibration to a smooth projective curve, such that each fiber is a singular curve.

Keywords

Characterization Counterexample Kodaira-Ramanujam vanishing 

2000 MR Subject Classification

14F17 14E30 

References

  1. [1]
    Bombieri, E. and Mumford, D., Enriques’ classification of surfaces in char. p, II, Complex Analysis and Algebraic Geometry, A Collection of Papers Dedicated to K. Kodaira, Cambridge University Press, Cambridge, 1977, 23–42.CrossRefGoogle Scholar
  2. [2]
    Bombieri, E. and Mumford, D., Enriques’ classification of surfaces in char. p, III, Invent. Math., 36, 1976, 197–232.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Deligne, P. and Illusie, L., Relèvements modulo p2 et décomposition du complexe de de Rham, Invent. Math., 89, 1987, 247–270.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Ekedahl, T., Canonical models of surfaces of general type in positive characteristic, Publ. Math. IHES, 67, 1988, 97–144.MathSciNetzbMATHGoogle Scholar
  5. [5]
    Hartshorne, R., Algebraic Geometry, Springer-Verlag, New York, 1977.zbMATHGoogle Scholar
  6. [6]
    Kawamata, Y., Matsuda, K. and Matsuki, K., Introduction to the minimal model problem, Alg. Geom. Sendai, 1985, Adv. Stud. Pure Math., 10, 1987, 283–360.Google Scholar
  7. [7]
    Ménégaux, R., Un théorème d’annulation en caractéristique positive, Séminaire sur les pinceaux de courbes de genre au moins deux by L. Szpiro, Astérisque, 86, 1981, 35–43.zbMATHGoogle Scholar
  8. [8]
    Mukai, S., On counterexamples to the Kodaira vanishing theorem and the Yau inequality in positive characteristic (in Japanese), Symposium on Algebraic Geometry, Kinosaki, 1979, 9–23.Google Scholar
  9. [9]
    Oort, F., Finite group schemes, local moduli for abelian varieties and lifting problems, Proc. 5th Nordic Summer School, Walter-Noordhoff, Groningen, 1970, 223–254.Google Scholar
  10. [10]
    Ramanujam, C. P., Remarks on the Kodaira vanishing theorem, J. Indian. Math. Soc., 36, 1972, 41–51; 38, 1974, 121–124.MathSciNetzbMATHGoogle Scholar
  11. [11]
    Raynaud, M., Contre-exemple au “vanishing theorem” en caractéristique p > 0, C. P. Ramanujam-A tribute, Studies in Math., 8, 1978, 273–278.MathSciNetGoogle Scholar
  12. [12]
    Serre, J.-P., Corps Locaux, Hermann, Paris, 1962.zbMATHGoogle Scholar
  13. [13]
    Tango, H., On the behavior of extensions of vector bundles under the Frobenius map, Nagoya Math. J., 48, 1972, 73–89.MathSciNetzbMATHGoogle Scholar
  14. [14]
    Tango, H., On the behavior of cohomology classes of vector bundles under the Frobenius map (in Japanese), Res. Inst. Math. Sci., Kôkyûroku, 144, 1972, 93–102.Google Scholar
  15. [15]
    Terakawa, H., The d-very ampleness on a projective surface in positive characteristic, Pacific J. Math., 187, 1999, 187–199.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    Xie, Q. H., Counterexamples to the Kawamata-Viehweg vanishing on ruled surfaces in positive characteristic, J. Algebra, 324, 2010, 3494–3506.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    Xie, Q. H., Kawamata-Viehweg vanishing on rational surfaces in positive characteristic, Math. Zeit., 266, 2010, 561–570.zbMATHCrossRefGoogle Scholar
  18. [18]
    Xie, Q. H., Strongly liftable schemes and the Kawamata-Viehweg vanishing in positive characteristic, Math. Res. Lett., 17, 2010, 563–572.MathSciNetzbMATHGoogle Scholar

Copyright information

© Fudan University and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.School of Mathematical SciencesFudan UniversityShanghaiChina

Personalised recommendations