Advertisement

Chinese Annals of Mathematics, Series B

, Volume 31, Issue 6, pp 939–952 | Cite as

Quasi-hydrostatic primitive equations for ocean global circulation models

  • Carine Lucas
  • Madalina Petcu
  • Antoine Rousseau
Article
  • 68 Downloads

Abstract

Global existence of weak and strong solutions to the quasi-hydrostatic primitive equations is studied in this paper. This model, that derives from the full non-hydrostatic model for geophysical fluid dynamics in the zero-limit of the aspect ratio, is more realistic than the classical hydrostatic model, since the traditional approximation that consists in neglecting a part of the Coriolis force is relaxed. After justifying the derivation of the model, the authors provide a rigorous proof of global existence of weak solutions, and well-posedness for strong solutions in dimension three.

Keywords

Hydrostatic approximation Coriolis force Ocean global circulation models Primitive equations Traditional approximation 

2000 MR Subject Classification

76M45 76U05 35B40 35Q35 76M20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Burger, A. P., The potential vorticity equation: from planetary to small scale, Tellus, 43A, 1991, 191–197.Google Scholar
  2. [2]
    Benoit Cushman-Roisin, Introduction to Geophysical Fluid Dynamics, Prentice-Hall, Indiana, 1994.Google Scholar
  3. [3]
    Cao, C. S. and Titi, E. S., Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. of Math., 166(2), 2007, 245–267.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    Dellar, P. J. and Salmon, R., Shallow water equations with a complete coriolis force and topography, Physics of Fluids, 17(10), 2005, 106601.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Eckart, C., Hydrodynamics of Oceans and Atmospheres, Pergamon Press, New York, 1960.zbMATHGoogle Scholar
  6. [6]
    Gill, A. E., Atmosphere-Ocean Dynamics, Academic Press, New York, 1982.Google Scholar
  7. [7]
    Kobelkov, G. M., Existence of a solution “in the large” for ocean dynamics equations, J. Math. Fluid Mech., 9(4), 2007, 588–610.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Kukavica, I. and Ziane, M., On the regularity of the primitive equations of the ocean, Nonlinearity, 20, 2007, 2739–2753.zbMATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Lucas, C. and Rousseau, A., New developments and cosine effect in the viscous shallow water and quasigeostrophic equations, Multiscale Modeling and Simulations, 7(2), 2008, 793–813.MathSciNetGoogle Scholar
  10. [10]
    Lucas, C. and Rousseau, A., Cosine effect in ocean models, Discrete Contin. Dyn. Syst. Series B, 13(4), 2010, 841–857.zbMATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    Lions, J. L., Temam, R. and Wang, S. H., New formulations of the primitive equations of atmosphere and applications, Nonlinearity, 5(2), 1992, 237–288.zbMATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    Lions, J. L., Temam, R. and Wang, S. H., On the equations of the large-scale ocean, Nonlinearity, 5(5), 1992, 1007–1053.zbMATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    Madec, G., NEMO ocean engine, Note du Pole de Modélisation, 27, Institut Pierre-Simon Laplace (IPSL), France, 2008.Google Scholar
  14. [14]
    Madec, G., Delecluse, P, Imbard, M. and Lévy, C., OPA 8.1 Ocean General Circulation Model reference manual, Note du Pole de Modélisation, Institut Pierre-Simon Laplace (IPSL), France, 1999.Google Scholar
  15. [15]
    Pedlosky, J., Geophysical Fluid Dynamics, 2nd ed., Springer-Verlag, New York, 1987.zbMATHGoogle Scholar
  16. [16]
    Phillips, N. A., The equations of motion for a shallow rotating atmosphere and the “traditional approximation”, J. Atmospheric Sciences, 23, 1966, 626–628.CrossRefGoogle Scholar
  17. [17]
    Phillips, N. A., Reply (to George Veronis), J. Atmospheric sciences, 25, 1968, 1155–1157.CrossRefGoogle Scholar
  18. [18]
    Petcu, M., Temam, R. and Ziane, M., Some mathematical problems in geophysical fluid dynamics, Handbook of Numerical Analysis, Special Volume on Computational Methods for the Oceans and the Atmosphere, P. G. Ciarlet (ed.), Vol. XIV. Elsevier, Amsterdam, 2008.Google Scholar
  19. [19]
    Shchepetkin, A. F. and McWilliams, J. C., The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model, Ocean Modelling, 9(4), 2005, 347–404.CrossRefGoogle Scholar
  20. [20]
    Veronis, G., Comments on phillips proposed simplification of the equations of motion for a shallow rotating atmosphere, J. Atmospheric Sciences, 25, 1968, 1154–1155.CrossRefGoogle Scholar
  21. [21]
    Wangsness, R. K., Comments on “the equations of motion for a shallow rotating atmosphere and the ‘traditionnal approximation’ ”, J. Atmospheric Sciences, 27, 1970, 504–506.CrossRefGoogle Scholar
  22. [22]
    White, A. A. and Bromley, R. A., Dynamically consistent, quasi-hydrostatic equations for global models with a complete representation of the coriolis force, Q. J. R. Meteorol. Soc., 121, 1995, 399–418.CrossRefGoogle Scholar
  23. [23]
    White, A. A., Hoskins, B. J., Roulstone, I. and Staniforth, A., Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic, Q. J. R. Meteorol. Soc., 131, 2005, 2081–2107.CrossRefGoogle Scholar

Copyright information

© Editorial Office of CAM (Fudan University) and Springer Berlin Heidelberg 2010

Authors and Affiliations

  • Carine Lucas
    • 1
  • Madalina Petcu
    • 2
  • Antoine Rousseau
    • 3
  1. 1.Laboratoire MAPMO (UMR 6628), Fédération Denis Poisson (FDP-FR2964)Université d’OrléansOrléans Cedex 2France
  2. 2.Laboratoire de Mathématiques et ApplicationsFuturoscope Chasseneuil CedexFrance
  3. 3.Laboratoire Jean KuntzmannINRIAGrenoble Cedex 9France

Personalised recommendations