Advertisement

Chinese Annals of Mathematics, Series B

, Volume 31, Issue 5, pp 607–618 | Cite as

On Korn’s inequality

  • Philippe G. Ciarlet
Article

Abstract

The author first reviews the classical Korn inequality and its proof. Following recent works of S. Kesavan, P. Ciarlet, Jr., and the author, it is shown how the Korn inequality can be recovered by an entirely different proof. This new proof hinges on appropriate weak versions of the classical Poincaré and Saint-Venant lemma. In fine, both proofs essentially depend on a crucial lemma of J. L. Lions, recalled at the beginning of this paper.

Keywords

Korn inequality J. L. Lions lemma 

2000 MR Subject Classification

49N10 49N15 74B99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Amrouche, C., Ciarlet, P. G., Gratie, L. and Kesavan, S., On the characterizations of matrix fields as linearized strain tensor fields, J. Math. Pures Appl., 86, 2006, 116–132.zbMATHMathSciNetGoogle Scholar
  2. [2]
    Amrouche, C. and Girault, V., Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J., 44, 1994, 109–140.zbMATHMathSciNetGoogle Scholar
  3. [3]
    Borchers, W. and Sohr, H., On the equations rot v = g and div u = f with zero boundary, conditions, Hokkaido Math. J., 19, 1990, 67–87.zbMATHMathSciNetGoogle Scholar
  4. [4]
    Ciarlet, P. G. and Ciarlet, P., J., Another approach to linearized elasticity and a new proof of Korn’s inequality, Math. Models Methods Appl. Sci., 15, 2005, 259–271.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Duvaut, G. and Lions, J. L., Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972.zbMATHGoogle Scholar
  6. [6]
    Flanders, H., Differential Forms with Applications to the Physical Sciences, Dover, New York, 1989 (unabridged, corrected republication of the original edition published in 1963 by Academic Press, New York).zbMATHGoogle Scholar
  7. [7]
    Friedrichs, K. O., On the boundary-value problems of the theory of elasticity and Korn’s inequality, Ann. of Math., 48(2), 1947, 441–471.CrossRefMathSciNetGoogle Scholar
  8. [8]
    Geymonat, G. and Gilardi, G., Contre-exemple à l’inégalité de Korn et au lemme de Lions dans des domaines irréguliers, Equations aux Dérivées Partielles et Applications. Articles Dédiés à Jacques-Louis Lions, Gauthier-Villars, Paris, 1998, 541–548.Google Scholar
  9. [9]
    Geymonat, G. and Suquet, P., Functional spaces for Norton-Hoff materials, Math. Models Methods Appl. Sci., 8, 1986, 206–222.zbMATHMathSciNetGoogle Scholar
  10. [10]
    Girault, V. and Raviart, P. A., Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Heidelberg, 1986.zbMATHGoogle Scholar
  11. [11]
    Gobert, J., Une inégalité fondamentale de la théorie de l’élasticité, Bull. Soc. Roy. Sci. Liège, 31, 1962, 182–191.zbMATHMathSciNetGoogle Scholar
  12. [12]
    Horgan, C. O., Korn’s inequalities and their applications in continuum mechanics, SIAM Review, 37, 1995, 491–511.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Kesavan, S., On Poincaré’s and J. L. Lions’ lemmas, C. R. Math. Acad. Sci. Paris, Série I, 340, 2005, 27–30.zbMATHMathSciNetGoogle Scholar
  14. [14]
    Korn, A., Die Eigenschwingungen eines elastischen Körpers mit ruhender Oberfläche, Sitzungsberichte der Mathematisch-physikalischen Klasse der Königlich bayerischen Akademie der Wissenschaften zu München, 36, 1906, 351–402.Google Scholar
  15. [15]
    Korn, A., Solution générale du problème d’équilibre dans la théorie de l’élasticité, dans le cas où les efforts sont donnés à la surface, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys., 10, 1908, 165–269.MathSciNetGoogle Scholar
  16. [16]
    Korn, A., Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen, Bulletin International de l’Académie des Sciences de Cracovie, 9, 1909, 705–724.Google Scholar
  17. [17]
    Lions, J. L., Equations Différentielles Opérationnelles et Problèmes aux Limites, Springer-Verlag, Berlin, 1961.zbMATHGoogle Scholar
  18. [18]
    Lions, J. L., Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.zbMATHGoogle Scholar
  19. [19]
    Lions, J. L., Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal, Lecture Notes in Mathematics, 323, Springer-Verlag, Berlin, 1973.zbMATHGoogle Scholar
  20. [20]
    Magenes, E. and Stampacchia, G., I problemi al contorno per le equazioni differenziali di tipo ellitico, Ann. Scuola Norm. Sup. Pisa, 12, 1958, 247–358.zbMATHMathSciNetGoogle Scholar
  21. [21]
    Mardare, S., On Poincaré and De Rham’s theorems, Rev. Roumaine Math. Pures Appl., 53, 2008, 523–541.zbMATHMathSciNetGoogle Scholar
  22. [22]
    Nečas, J., Equations aux Dérivées Partielles, Presses de l’Université de Montréal, Montréal, 1965.Google Scholar
  23. [23]
    Tartar, L., Topics in Nonlinear Analysis, Publications Mathématiques d’Orsay, No. 78.13, Université de Paris-Sud, Orsay, 1978.Google Scholar
  24. [24]
    Yosida, K., Functional Analysis, Classics in Mathematics, Springer-Verlag, Berlin, 1995 (reprinting of the 6th ed., published in 1980).Google Scholar

Copyright information

© Editorial Office of CAM (Fudan University) and Springer Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of MathematicsCity University of Hong KongKowloon, Hong KongChina

Personalised recommendations