Chinese Annals of Mathematics, Series B

, Volume 31, Issue 5, pp 655–678 | Cite as

Trajectory attractors for binary fluid mixtures in 3D

  • Ciprian G. GalEmail author
  • Maurizio Grasselli


Two different models for the evolution of incompressible binary fluid mixtures in a three-dimensional bounded domain are considered. They consist of the 3D incompressible Navier-Stokes equations, subject to time-dependent external forces and coupled with either a convective Allen-Cahn or Cahn-Hilliard equation. Such systems can be viewed as generalizations of the Navier-Stokes equations to two-phase fluids. Using the trajectory approach, the authors prove the existence of the trajectory attractor for both systems.


Navier-Stokes equations Allen-Cahn equations Cahn-Hilliard equations Two-phase fluid flows Longtime behavior Trajectory attractors 

2000 MR Subject Classification

35B40 35B41 35K55 35Q35 76D05 76T99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Abels, H., On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal., 194, 2009, 463–506.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Abels, H., Longtime behavior of solutions of a Navier-Stokes/Cahn-Hilliard system, Nonlocal and Abstract Parabolic Equations and Their Applications, Banach Center Publ., 86, Polish Acad. Sci. Inst. Math., Warsaw, 2009, 9–19.Google Scholar
  3. [3]
    Abels, H. and Feireisl, E., On a diffuse interface model for a two-phase flow of compressible viscous fluids, Indiana Univ. Math. J., 57, 2008, 659–698.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Abels, H. and Röger, M., Existence of weak solutions for a non-classical sharp interface model for a two-phase flow of viscous, incompressible fluids, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26, 2009, 2403–2424.zbMATHCrossRefGoogle Scholar
  5. [5]
    Anderson, D. M., McFadden, G. B. and Wheeler, A. A., Diffuse-interface methods in fluid mechanics, Annual Review of Fluid Mechanics, Annu. Rev. Fluid Mech., Vol. 30, Annual Reviews, Palo Alto, CA, 1998, 139–165.CrossRefMathSciNetGoogle Scholar
  6. [6]
    Badalassi, V. E., Ceniceros, H. D. and Banerjee, S., Computation of multiphase systems with phase field models, J. Comput. Phys., 190, 2003, 371–397.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Ball, J. M., Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonlinear Sci., 7, 1997, 475–502. [Erratum: J. Nonlinear Sci. 8 (1998), 233]zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Berti, S., Boffetta, G., Cencini, M. and Vulpiani, A., Turbulence and coarsening in active and passive binary mixtures, Phys. Rev. Lett., 95, 2005, 224501.CrossRefGoogle Scholar
  9. [9]
    Blesgen, T., A generalization of the Navier-Stokes equation to two-phase flows, J. Physics D (Applied Physics), 32, 1999, 1119–1123.CrossRefGoogle Scholar
  10. [10]
    Boyer, F., Mathematical study of multi-phase flow under shear through order parameter formulation, Asymptotic Anal, 20, 1999, 175–212.zbMATHMathSciNetGoogle Scholar
  11. [11]
    Boyer, F., Nonhomogeneous Cahn-Hilliard fluids, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18, 2001, 225–259.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Boyer, F. A theoretical and numerical model for the study of incompressible mixture flows, Computer and Fluids, 31, 2002, 41–68.CrossRefMathSciNetGoogle Scholar
  13. [13]
    Boyer, F. and Fabrie, P., Persistency of 2D perturbations of one-dimensional solutions for a Cahn-Hilliard flow model under high shear, Asymptotic Anal., 33, 2003, 107–151.zbMATHMathSciNetGoogle Scholar
  14. [14]
    Bray, A. J., Theory of phase-ordering kinetics, Adv. Phys., 51, 2002, 481–587.CrossRefMathSciNetGoogle Scholar
  15. [15]
    Cahn, J. W. and Hilliard, J. H., Free energy of a nonuniform system, I, Interfacial free energy, J. Chem. Phys., 28, 1958, 258–267.CrossRefGoogle Scholar
  16. [16]
    Caraballo, T., Marín-Rubio, P. and Robinson, J. C., A comparison between two theories for multi-valued semiflows and their asymptotic behavior, Set Valued Anal., 11, 2003, 297–322.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    Chella, R. and Viñals, J., Mixing of a two-phase fluid by a cavity flow, Phys. Rev. E, 53, 1996, 3832–3840.CrossRefGoogle Scholar
  18. [18]
    Chepyzhov, V. V. and Vishik, M. I., Evolution equations and their trajectory attractors, J. Math. Pures Appl., 76(9), 1997, 913–964.zbMATHMathSciNetGoogle Scholar
  19. [19]
    Chepyzhov, V. V. and Vishik, M. I., Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, Vol. 49, A. M. S., Providence, RI, 2002.zbMATHGoogle Scholar
  20. [20]
    Cheskidov, A. and Foias, C., On global attractors of the 3D Navier-Stokes equations, J. Diff. Eqs., 231, 2006, 714–754.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    Chupin, L., Existence result for a mixture of non newtonian flows with stress diffusion using the Cahn-Hilliard formulation, Discrete Contin. Dyn. Syst. Ser. B, 3, 2003, 45–68.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    Climent-Ezquerra, B., Guillén-González, F. and Rojas-Medar, M., Reproductivity for a nematic liquid crystal model, Z. Angew. Math. Phys., 57, 2006, 984–998.zbMATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    Climent-Ezquerra, B., Guillén-González, F. and Moreno-Iraberte, M. J., Regularity and time-periodicity for a nematic liquid crystal model, Nonlinear Anal., 71, 2009, 539–549.zbMATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    Cutland, N. J., Global attractors for small samples and germs of 3D Navier-Stokes equations, Nonlinear Anal., 62, 2005, 265–281.zbMATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    Du, Q., Liu, C., Ryham, R. and Wang, X., A phase field formulation of the Willmore problem, Nonlinearity, 18, 2005, 1249–1267.zbMATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    Du, Q., Li, M. and Liu, C., Analysis of a phase field Navier-Stokes vesicle-fluid interaction model, Discrete Contin. Dyn. Syst. Ser. B, 8, 2007, 539–556.zbMATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    Fabrie, P. and Miranville, A., Exponential attractors for nonautonomous first-order evolution equations, Discrete Contin. Dynam. Systems, 4, 1998, 225–240.zbMATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    Feireisl, E., Petzeltová, H., Rocca, E. et al., Analysis of a phase-field model for two-phase compressible fluids, Math. Models Methods Appl. Sci., preprint. DOI: 10.1142/S0218202510004544Google Scholar
  29. [29]
    Feng, X., He, Y. and Liu, C., Analysis of finite element approximations of a phase field model for two-phase fluids, Math. Comp., 76, 2007, 539–571.zbMATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    Flandoli, F. and Schmalfuss, B., Weak solutions and attractors for the 3-dimensional Navier-Stokes equations with nonregular force, J. Dynam. Differential Equations, 11, 1999, 355–398.zbMATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    Gal, C. G. and Grasselli, M., Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27, 2010, 401–436.zbMATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    Gal, C. G. and Grasselli, M., Longtime behavior for a model of homogeneous incompressible two-phase flows, Discrete Contin. Dyn. Syst., 28, 2010, 1–39.zbMATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    Gurtin, M. E., Polignone, D. and Viñals, J., Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Meth. Appl. Sci., 6, 1996, 8–15.CrossRefGoogle Scholar
  34. [34]
    Hohenberg, P. C. and Halperin, B. I., Theory of dynamical critical phenomena, Rev. Mod. Phys., 49, 1977, 435–479.CrossRefGoogle Scholar
  35. [35]
    Hu, X. and Wang, D., Global solution to the three-dimensional incompressible flow of liquid crystals, Comm. Math. Phys., 296, 2010, 861–880.zbMATHCrossRefMathSciNetGoogle Scholar
  36. [36]
    Jacqmin, D., Calculation of two-phase Navier-Stokes flows using phase-field modelling, J. Comp. Phys., 155, 1999, 96–127.zbMATHCrossRefMathSciNetGoogle Scholar
  37. [37]
    Jasnow, D. and Viñals, J., Coarse-grained description of thermo-capillary flow, Phys. Fluids, 8, 1996, 660–669.zbMATHCrossRefGoogle Scholar
  38. [38]
    Kapustyan, A. V. and Valero, J., Weak and strong attractors for the 3D Navier-Stokes system, J. Diff. Eqs., 240, 2007, 249–278.zbMATHCrossRefMathSciNetGoogle Scholar
  39. [39]
    Kay, D., Styles, V. and Welford, R., Finite element approximation of a Cahn-Hilliard-Navier-Stokes system, Interfaces Free Bound., 10, 2008, 15–43.zbMATHCrossRefMathSciNetGoogle Scholar
  40. [40]
    Kim, N., Consiglieri, L. and Rodrigues, J. F., On non-Newtonian incompressible fluids with phase transitions, Math. Meth. Appl. Sci., 29, 2006, 1523–1541.zbMATHCrossRefMathSciNetGoogle Scholar
  41. [41]
    Kim, J., Kang, K. and Lowengrub, J., Conservative multigrid methods for Cahn-Hilliard fluids, J. Comput. Phys., 193, 2004, 511–543.zbMATHCrossRefMathSciNetGoogle Scholar
  42. [42]
    Lamorgese, A. G. and Mauri, R., Diffuse-interface modeling of phase segregation in liquid mixtures, International J. Multiphase Flow, 3, 2008, 987–995.CrossRefGoogle Scholar
  43. [43]
    Lin, F. H., Nonlinear theory of defects in nematic liquid crystals: phase transition and flow phenomena, Comm. Pure Appl. Math., 42, 1989, 789–814.zbMATHCrossRefMathSciNetGoogle Scholar
  44. [44]
    Lin, F. H. and Liu, C., Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48, 1995, 501–537.zbMATHCrossRefMathSciNetGoogle Scholar
  45. [45]
    Lions, J. L., Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.zbMATHGoogle Scholar
  46. [46]
    Liu, C. and Shen, J., A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Phys. D, 179, 2003, 211–228.zbMATHCrossRefMathSciNetGoogle Scholar
  47. [47]
    Liu, C. and Walkington, N. J., Approximation of liquid crystal flows, SIAM J. Num. Anal., 37, 2000, 725–741.zbMATHCrossRefMathSciNetGoogle Scholar
  48. [48]
    Lowengrub, J. and Truskinovsky, L., Quasi-incompressible Cahn-Hilliard fluids and topological transitions, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454, 1998, 2617–2654.zbMATHCrossRefMathSciNetGoogle Scholar
  49. [49]
    Lu, S., Attractors for nonautonomous 2D Navier-Stokes equations with less regular normal forces, J. Diff. Eqs., 230, 2006, 196–212.zbMATHCrossRefGoogle Scholar
  50. [50]
    Lu, S., Wu, H. and Zhong, C., Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces, Discrete Contin. Dyn. Syst., 13, 2005, 701–719.zbMATHCrossRefMathSciNetGoogle Scholar
  51. [51]
    Melnik, V., Multivalues semiflows and their attractors (in Russian), Dokl. Akad. Nauk., 343, 1995, 302–305.MathSciNetGoogle Scholar
  52. [52]
    Melnik, V. and Valero, J., On attractors of multi-valued semi-flows and differential inclusions, Set Valued Anal., 6, 1998, 83–111.CrossRefMathSciNetGoogle Scholar
  53. [53]
    Morro, A., Phase-field models for fluid mixtures, Math. Comput. Modelling, 45, 2007, 1042–1052.zbMATHCrossRefMathSciNetGoogle Scholar
  54. [54]
    Onuki, A., Phase transitions of fluids in shear flow, J. Physics: Cond. Matter, 9, 1997, 6119–6157.CrossRefGoogle Scholar
  55. [55]
    Robinson, J. C., Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics, Cambridge, 2001.zbMATHGoogle Scholar
  56. [56]
    Rosa, R. M. S., Asymptotic regularity conditions for the strong convergence towards weak limit sets and weak attractors of the 3D Navier-Stokes equations, J. Diff. Eqs., 229, 2006, 257–269.zbMATHCrossRefMathSciNetGoogle Scholar
  57. [57]
    Ruiz, R. and Nelson, D. R., Turbulence in binary fluid mixtures, Phys. Rev. A, 23, 1981, 3224–3246.CrossRefGoogle Scholar
  58. [58]
    Sell, G. R., Global attractors for the three-dimensional Navier-Stokes equations, J. Dynam. Diff. Eqs., 8, 1996, 1–33.zbMATHCrossRefMathSciNetGoogle Scholar
  59. [59]
    Sell, G. R. and You, Y., Dynamics of Evolutionary Equations, Appl. Math. Sci., 143, Springer-Verlag, New York, 2002.Google Scholar
  60. [60]
    Shkoller, S., Well-posedness and global attractors for liquid crystals on Riemannian manifolds, Comm. Part. Diff. Eqs., 27, 2002, 1103–1137.zbMATHCrossRefMathSciNetGoogle Scholar
  61. [61]
    Siggia, E. D., Late stages of spinodal decomposition in binary mixtures, Phys. Rev. A, 20, 1979, 595–605.CrossRefGoogle Scholar
  62. [62]
    Starovoitov, V. N., The dynamics of a two-component fluid in the presence of capillary forces, Math. Notes, 62, 1997, 244–254.zbMATHCrossRefMathSciNetGoogle Scholar
  63. [63]
    Tan, Z. Lim, K. M. and Khoo, B. C., An adaptive mesh redistribution method for the incompressible mixture flows using phase-field model, J. Comp. Phys., 225, 2007, 1137–1158.zbMATHCrossRefMathSciNetGoogle Scholar
  64. [64]
    Temam, R., Infinite-dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci., 68, Springer-Verlag, New York, 1988.Google Scholar
  65. [65]
    Temam, R., Navier-Stokes Equations, Theory and Numerical Analysis, A. M. S., Providence, RI, 2001.Google Scholar
  66. [66]
    Wu, H., Long-time behavior for nonlinear hydrodynamic systems modeling the nematic liquid crystal flows, Discrete Contin. Dyn. Syst., 26, 2010, 379–396.zbMATHCrossRefMathSciNetGoogle Scholar
  67. [67]
    Yang, X., Feng, J. J., Liu, C. and Shen, J., Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method, J. Comp. Phys., 218, 2006, 417–428.zbMATHCrossRefMathSciNetGoogle Scholar
  68. [68]
    Zhao, L., Wu, H. and Huang, H., Convergence to equilibrium for a phase-field model for the mixture of two viscous incompressible fluids, Commun. Math. Sci., 7, 2009, 939–962.zbMATHMathSciNetGoogle Scholar

Copyright information

© Editorial Office of CAM (Fudan University) and Springer Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MissouriColumbiaUSA
  2. 2.Dipartimento di Matematica “F. Brioschi”Politecnico di MilanoMilanoItaly

Personalised recommendations