Chinese Annals of Mathematics, Series B

, Volume 31, Issue 5, pp 723–742 | Cite as

Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems

  • Tatsien LiEmail author
  • Bopeng Rao


In this paper, the authors define the strong (weak) exact boundary controllability and the strong (weak) exact boundary observability for first order quasilinear hyperbolic systems, and study their properties and the relationship between them.


Strong (weak) exact boundary controllability Strong (weak) exact boundary observability First order quasilinear hyperbolic system 

2000 MR Subject Classification

35B37 93B05 93B07 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Russell, D. L., Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20, 1978, 639–739.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Lions, J.-L., Contrôlabilité Exacte, Perturbations et Stabilisation de Syst`emes Distribués, Vol. I, Masson, Paris, 1988.Google Scholar
  3. [3]
    Li, T. T., Controllability and Observability for Quasilinear Hyperbolic Systems, AIMS Series on Applied Mathematics, Vol. 3, American Institute of Mathematical Sciences & Higher Education Press, Springfield, Beijing, 2010.Google Scholar
  4. [4]
    Li, T. T. and Yu, W. C., Boundary Value Problems for Quasilinear Hyperbolic Systems, Duke University Mathematics, Series V, Duke University Press, Durham, 1985.Google Scholar
  5. [5]
    Li, T. T. and Jin, Y., Semi-global C 1 solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems, Chin. Ann. Math., 22B(3), 2001, 325–336.CrossRefMathSciNetGoogle Scholar
  6. [6]
    Cirinà, M., Boundary controllability of nonlinear hyperbolic systems, SIAM J. Control Optim., 7, 1969, 198–212.zbMATHCrossRefGoogle Scholar
  7. [7]
    Li, T. T., Rao, B. P. and Jin, Y., Solution C 1 semi-globale et contrôlabilité exacte fronti`ere de syst`emes hyperboliques quasi linéaires, C. R. Math. Acad. Sci. Paris Ser. I, 333, 2001, 219–224.zbMATHMathSciNetGoogle Scholar
  8. [8]
    Li, T. T. and Rao, B. P., Exact boundary controllability for quasilinear hyperbolic systems, SIAM J. Control Optim., 41, 2003, 1748–1755.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Li, T. T. and Rao, B. P., Local exact boundary controllability for a class of quasilinear hyperbolic systems, Chin. Ann. Math., 23B, 2002, 209–218.CrossRefMathSciNetGoogle Scholar
  10. [10]
    Zhang, Q., Exact boundary controllability with less controls acting on two ends for quasilinear hyperbolic systems (in Chinese), Appl. Math. J. Chinese Univ. Ser. A, 24, 2009, 65–74.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Li, T. T., Observabilité exacte fronti`ere pour des syst`emes hyperboliques quasi-linéaires, C. R. Math. Acad. Sci. Paris Ser. I, 342, 2006, 937–942.zbMATHGoogle Scholar
  12. [12]
    Li, T. T., Exact boundary observability for quasilinear hyperbolic systems, ESAIM: Control Optim. Calc. Var., 14, 2008, 759–766.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Editorial Office of CAM (Fudan University) and Springer Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.School of Mathematical SciencesFudan UniversityShanghaiChina
  2. 2.Shanghai Key Laboratory for Contemporary Applied MathematicsNonlinear Mathematical Modeling and Methods LaboratoryShanghaiChina
  3. 3.Institut de Recherche Mathématique AvancéeUniversité de StrasbourgStrasbourgFrance

Personalised recommendations