Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

The Existence and Long-Time Behavior of Weak Solution to Bipolar Quantum Drift-Diffusion Model*

  • 35 Accesses

  • 9 Citations


The authors study the existence and long-time behavior of weak solutions to the bipolar transient quantum drift-diffusion model, a fourth order parabolic system. Using semi-discretization in time and entropy estimate, the authors get the global existence of nonnegative weak solutions to the one-dimensional model with nonnegative initial and homogenous Neumann (or periodic) boundary conditions. Furthermore, by a logarithmic Sobolev inequality, it is proved that the periodic weak solution exponentially approaches its mean value as time increases to infinity.

This is a preview of subscription content, log in to check access.


  1. 1.

    Abdallah, N. B. and Unterreiter, A., On the stationatry quantum drift diffusion model, Z. Angew. Math. Phys., 49(2), 1998, 251–275

  2. 2.

    Bleher, P. M., Lebowitz, J. L. and Speer, E. R., Existence and positivity of solutions of a fourth-order nonlinear PDE describing interface fluctuations, Commun. Pure Appl. Math., 47, 1994, 923–942

  3. 3.

    Cáceres, M. J., Carrillo, J. A. and Toscani, G., Long-time behaviour for a nonlinear fourth-order parabolic equation, Trans. American Math. Society, 357(3), 2004, 1161–1175

  4. 4.

    Chen, L. and Jüngel, A., Analysis of a multi-dimensional parabolic population model with strong crossdiffusion, SIAM J. Math. Anal., 36, 2004, 301–322

  5. 5.

    Ju, Q. C. and Chen, L., Semiclassical limit for bipolar quantum drift-diffusion model, preprint

  6. 6.

    Chen, L. and Ju, Q. C., Existence of weak solution and semiclassical limit for quantum drift-diffusion model, Z. Angew. Math. Phys., 58(1), 2006, 1–15

  7. 7.

    Chen, L. and Ju, Q. C., The semiclassical limit in the quantum drift-diffusion equations with isentrophic pressure, submitted

  8. 8.

    Chen, X., Chen, L. and Jian, H. Y., Existence, semiclassical limit and long-time behavior of weak solution to quantum drift-diffusion model, submitted

  9. 9.

    Dolbeault, J., Gentil, I. and Jüngel, A., A nonlinear fourth-order parabolic equation and related logarithmic Sobolev inequalities, Commun. Math. Sci., 4, 2006, 275–290

  10. 10.

    Degond, P., Méhats, F. and Ringhofer, C., Quantum energy-transport and drift-diffusion models, J. Stat. Phys., 118, 2005, 625–665

  11. 11.

    Jian, H. Y., Liu, Q. and Chen, X., Convexity and symmetry of translating solitons in mean curvature flows, Chin. Ann. Math., 26B(3), 2005, 413–422

  12. 12.

    Jüngel, A., Nonlinear problems on quantum semiconductor modeling, Nonlin. Anal., 47, 2001, 5873–5884

  13. 13.

    Jüngel, A. and Li, H. L., Quantum Euler-Poisson systems: global existence and exponential decay, Quart. Appl. Math., 62, 2004, 569–600

  14. 14.

    Jüngel, A. and Pinnau, R., Global non-negative solutions of a nonlinear fourth order parabolic equation for quantum systems, SIAM J. Math. Anal., 32(4), 2000, 760–777

  15. 15.

    Jüngel, A. and Pinnau, R., A positivity preserving numerical scheme for a nonlinear fourth-order parabolic system, SIAM J. Num. Anal., 39(2), 2001, 385–406

  16. 16.

    Jüngel, A. and Pinnau, R., Convergent semidiscretization of a nonlinear fourth order parabolic system, Math. Mod. Num. Anal., 37(2), 2003, 277–289

  17. 17.

    Jüngel, A. and Toscani, G., Exponential decay in time of solutions to a nonlinear fourth-order parabolic equation, Z. Angew. Math. Phys., 54, 2003, 377–386

  18. 18.

    Li, T. T. and Wang, L. B., Inverse piston problem for the system of one-dimensional isentropic flow, Chin. Ann. Math., 28B(2), 2007, 205–212

  19. 19.

    Li, T. T. and Wang, L. B., Blow-up mechanism of classical solutions to quasilinear hyperbolic systems in the critical case, Chin. Ann. Math., 27B(2), 2006, 193–218

  20. 20.

    Pinnau, R., A review on the quantum drift diffusion model, Transp. Theory Stat. Phys., 31(4–6), 2002, 367–395

  21. 21.

    Simon, J., Compact sets in the space L p(0, T;B), Ann. Mat. Pura Appl., 146, 1987, 65–96

  22. 22.

    Wang, X. J., Schauder estimates for elliptic and parabolic equations, Chin. Ann. Math., 27B(6), 2006, 637–642

Download references

Author information

Correspondence to Xiuqing Chen.

Additional information

* Project supported by the National Natural Science Foundation of China (Nos. 10631020, 10401019) and the Basic Research Grant of Tsinghua University.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, X., Chen, L. & Jian, H. The Existence and Long-Time Behavior of Weak Solution to Bipolar Quantum Drift-Diffusion Model*. Chin. Ann. Math. Ser. B 28, 651–664 (2007).

Download citation


  • Quantum drift-diffusion
  • Weak solution
  • Long-time behavior

2000 MR Subject Classification

  • 35k35
  • 35J60
  • 65M12
  • 65M20