Chinese Annals of Mathematics, Series B

, Volume 28, Issue 6, pp 665–676 | Cite as

The Elastic Continuum Limit of the Tight Binding Model*

  • Weinan E
  • Jianfeng Lu


The authors consider the simplest quantum mechanics model of solids, the tight binding model, and prove that in the continuum limit, the energy of tight binding model converges to that of the continuum elasticity model obtained using Cauchy-Born rule. The technique in this paper is based mainly on spectral perturbation theory for large matrices.


Continuum limit Elasticity theory Cauchy-Born rule Tight binding model 

2000 MR Subject Classification

74B20 35Q72 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashcroft, N. and Mermin, N., Solid State Physics, Saunders College Publishing, New York, 1976Google Scholar
  2. 2.
    Blanc, X., Le Bris, C. and Lions, P. L., From molecular models to continuum mechanics, Arch. Rational Mech. Anal., 164, 2002, 341–381zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Born, M. and Huang, K., Dynamical Theory of Crystal Lattices, Oxford University Press, Oxford, England, 1954Google Scholar
  4. 4.
    Catto, I., Le Bris, C. and Lions, P. L., Mathematical Theory of Thermodynamic Limits: Thomas-Fermi Type Models, Oxford University Press, Oxford, 1998Google Scholar
  5. 5.
    Catto, I., Le Bris, C. and Lions, P. L., On the thermodynamic limit for Hartree-Fock type models, Ann. Inst. Henri Poincaré, 18, 2001, 687–760zbMATHMathSciNetGoogle Scholar
  6. 6.
    Catto, I., Le Bris, C. and Lions, P. L., On some periodic Hartree-type models for crystals, Ann. Inst. Henri Poincaré, 19, 2002, 143–190zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    E, W. and Engquist, B., Multiscale modeling and computation, Notices Amer. Math. Soc., 50(9), 2003, 1062–1070zbMATHMathSciNetGoogle Scholar
  8. 8.
    E, W. and Ming, P., Cauchy-Born rule and stability of crystalline solids: static problems, Arch. Rational Mech. Anal., 183(2), 2007, 241–297zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Harrison, W. A., Electronic Structure and the Properties of Solids, W. H. Freeman and Company, San Francisco, 1980Google Scholar
  10. 10.
    Hoffman, A. and Wielandt, H., The variation of the spectrum of a normal matrix, Duke Math. J., 20, 1953, 37–39zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lieb, E. H. and Simon, B., The Thomas-Fermi theory of atoms, molecuels, and solids, Adv. Math., 53, 1977, 22–116CrossRefGoogle Scholar

Copyright information

© The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Department of Mathematics and Program in Applied and Computational MathematicsPrinceton UniversityPrincetonUSA
  2. 2.Program in Applied and Computational MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations