Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Hardy-type inequalities on H-type groups and anisotropic Heisenberg groups


The author obtains some weighted Hardy-type inequalities on H-type groups and anisotropic Heisenberg groups. These inequalities generalize some recent results due to N. Garofalo, E. Lanconelli, I. Kombe and P. Niu et al.

This is a preview of subscription content, log in to check access.


  1. [1]

    Garofalo, N. and Lanconelli, E., Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation, Ann. Inst. Fourier (Grenoble), 40(2), 1990, 313–356.

  2. [2]

    Kombe, I., Sharp Hardy type inequalities on the Carnot group. arXiv:math.FA/0501522

  3. [3]

    Niu, P., Zhang, H. and Wang, Y., Hardy type and Rellich type inequalities on the Heisenberg group, Proc. Amer. Math. Soc., 129(12), 2001, 3623–3630.

  4. [4]

    D’Ambrozio, L., Some Hardy inequalities on the Heisenberg group, Differ. Uravn., 40(4), 2004, 509–521.

  5. [5]

    Garcia Azorero, J. P., Peral Alnoso, I., Hardy inequalities and some critical elliptic and parabolic problems, J. Diff. Eqs., 144(2), 1998, 441–476.

  6. [6]

    Goldstein, J. A. and Kombe, I., Nonlinear degenerate parabolic equations on the Heisenberg group, Int. J. Evol. Eqn., 1(1), 2005, 1–22.

  7. [7]

    Sun, M. and Yang, X., Quasi-convex Functions in Carnot Groups, Chin. Ann. Math., 28B(2), 2007, 235–242.

  8. [8]

    D’Ambrozio, L., Hardy-type inequalities related to degenerate elliptic differential operators, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 4(3), 2005, 451–486.

  9. [9]

    Han, J., Niu, P. and Han, Y., Some Hardy-type inequalities on groups of Heisenberg type (in Chinese), J. Systems Sci. Math. Sci., 25(5), 2005, 588–598.

  10. [10]

    Kaplan, A., Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc., 258(1), 1980, 147–153.

  11. [11]

    Cowling, M., Dooley, A., Korányi, A. and Ricci, F., An approach to symmetric spaces of rank one via groups of Heisenberg type, J. Geom. Anal., 8(2), 1998, 199–237.

  12. [12]

    Cowling, M., Dooley, A., Korányi, A. et al, H-type groups and Iwasawa decompositions Adv. Math., 87(1), 1991, 1–41.

  13. [13]

    Kaplan, A., Lie groups of Heisenberg type, Conference on Differential Geometry on Homogeneous Spaces (Turin, 1983), Rend. Sem. mat. Univ. Politec. Torino, Special Issue, 1983, 117–130.

  14. [14]

    Korányi, A., Geometric properties of Heisenberg-type groups, Adv. in Math., 56(1), 1985, 28–38.

  15. [15]

    Capogna, L., Danielli, D. and Garofalo, N., Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations, Amer. J. Math., 118(6), 1996, 1153–1196.

  16. [16]

    Jin, Y. and Zhang, G., Fundamental solutions for a class of degenerate p-Laplacian operators and applications to Hardy type inequalities, preprint, 2006.

  17. [17]

    Tyson, J. T., Sharp weighted Young’s inequalities and Moser-Trudinger inequalities on the Heisenberg groups and Grushin spaces, Potential Anal., 24(4), 2006, 357–384.

  18. [18]

    Folland, G. B. and Stein, E. M., Hardy Spaces on Homogeneous Groups, Princeton University Press, Princeton, 1982.

  19. [19]

    Chang, D. and Greiner, P., Harmonic analysis and sub-Riemannian geometry on Heisenberg groups, Bull. Inst. Math. Acad. Sinica, 30(3), 2002, 153–190.

  20. [20]

    Chang, D. and Tie, J., A note on Hermite and subelliptic operators, Acta Math. Sin., Engl. Ser., 21(4), 2005, 803–818.

Download references

Author information

Correspondence to Yongyang Jin.

Additional information

Project supported by the China State Scholarship (No. 2003833095) and the Department of Education of Zhejiang Province (No. 20051495).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jin, Y. Hardy-type inequalities on H-type groups and anisotropic Heisenberg groups. Chin. Ann. Math. Ser. B 29, 567–574 (2008).

Download citation


  • Hardy-type inequalities
  • H-type groups
  • Anisotropic Heisenberg groups

2000 MR Subject Classification

  • 26D10
  • 22E30
  • 46E35