Chinese Annals of Mathematics, Series B

, Volume 28, Issue 6, pp 737–746 | Cite as

Exponential Synchronization of the Linearly Coupled Dynamical Networks with Delays*

ORIGINAL ARTICLES

Abstract

In this paper, the authors investigate the synchronization of an array of linearly coupled identical dynamical systems with a delayed coupling. Here the coupling matrix can be asymmetric and reducible. Some criteria ensuring delay-independent and delay-dependent global synchronization are derived respectively. It is shown that if the coupling delay is less than a positive threshold, then the coupled network will be synchronized. On the other hand, with the increase of coupling delay, the synchronization stability of the network will be restrained, even eventually de-synchronized.

Keywords

Time-delay Synchronization Exponential stability Left eigenvector 

2000 MR Subject Classification

17B40 17B50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Strogatz, S. H., Exploring complex networks, Nature, 410, 2001, 268–276CrossRefGoogle Scholar
  2. 2.
    Albert, R. and Barabasi, A. L., Statistical mechanics of complex networks, Rev. Mod. Phys., 74, 2002, 47–97CrossRefMathSciNetGoogle Scholar
  3. 3.
    Newman, M. E. J., The structure and function of complex networks, SIAM Review, 45, 2003, 167–256MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Mirollo, R. E. and Strogatz, S. H., Synchronizaion of pulse-coupled biological oscillators, SIAM J. Appl. Math., 50(6), 1990, 1645–1662MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Lu, W. L. and Chen, T. P., Synchronization of coupled connected neural networks with delays, IEEE Trans. Circuits Syst. I, 51, 2004, 2491–2503CrossRefGoogle Scholar
  6. 6.
    Wu, C. W. and Chua, L. O., Synchronization in an array of linearly coupled dynamical systems, IEEE Trans. Circuits Syst. I, 42(8), 1995, 430–447MATHCrossRefGoogle Scholar
  7. 7.
    Lu, W. L. and Chen, T. P., New approach to synchronization analysis of linearly coupled ordinary differ- ential systems, Physica D, 213, 2006, 214–230MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lu, W. L., Chen, T. P. and Chen, G. R., Synchronization analysis of linearly coupled systems described by differential equations with a coupling delay, Physica D, 221, 2006, 118–134MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Zhou, J. and Chen, T. P., Synchronization in general complex delayed dynamical networks, IEEE Trans. Circuits Syst. I, 53(3), 2006, 733–744CrossRefGoogle Scholar
  10. 10.
    Berman, A. and Plemmons, R. J., Nonnegative Matrices in the Mathematical Science, Academic, New York, 1970Google Scholar

Copyright information

© The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Laboratory of Nonlinear Mathematics Science, School of Mathematical SciencesFudan UniversityShang-haiChina
  2. 2.Laboratory of Nonlinear Mathematics Science, School of Mathematical SciencesFudan UniversityShanghaiChina

Personalised recommendations