Chinese Annals of Mathematics, Series B

, Volume 28, Issue 5, pp 521–526 | Cite as

Volume of Domains in Symmetric Spaces*

  • Ximo Gual-Arnau
  • Antonio M. Naveira


The authors derive a formula for the volume of a compact domain in a symmetric space from normal sections through a special submanifold in the symmetric space. This formula generalizes the volume of classical domains as tubes or domains given as motions along the submanifold. Finally, some stereological considerations regarding this formula are provided.


Curvature-adapted submanifold Lie triple systematic normal bundle Root decomposable normal bundle Symmetric space Volume 

2000 MR Subject Classification

53C35 53C21 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baddeley, A. and Jensen, E. B. V., Stereology for Statisticians, Chapman & Hall/CRC, Boca Raton, 2005.Google Scholar
  2. 2.
    Cruz-Orive, L. M., Stereology of single objects, J. Microsc., 186, 1997, 93–107.CrossRefGoogle Scholar
  3. 3.
    Domingo-Juan, M. C. and Miquel, V., Pappus type theorems for motions along a submanifold, Differential Geom. Appl., 21, 2004, 229–251.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Domingo-Juan, M. C. and Miquel, V., On the volume of a domain obtained by a holomorphic motion, Ann. Global Anal. Geom., 26, 2004, 253–269.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gray, A., Tubes, Birkhäusser, Basel, 2003.Google Scholar
  6. 6.
    Gray, A. and Miquel, V., On Pappus-type theorems on the volume in space forms, Ann. Global Anal. Geom., 18, 2000, 241–254.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gual-Arnau, X., On the volume from planar sections through a curve, Image Anal. Stereol., 24, 2005, 35–40.MathSciNetGoogle Scholar
  8. 8.
    Gundersen, H. J. G., The nucleator, J. Microsc., 151, 1988, 3–21.Google Scholar
  9. 9.
    Helgason, S., Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.Google Scholar
  10. 10.
    Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry, Interscience Publishers, New York, 1969.Google Scholar
  11. 11.
    Koike, N., Tubes of non-constant radius in symmetric spaces, Kyushu J. Math., 56, 2002, 267–291.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Naveira, A. M. and Gual-Arnau, X., The volume of geodesic balls and tubes about totally geodesic submanifolds in compact symmetric spaces, Differential Geom. Appl., 7, 1997, 101–113.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Department of MathematicsUniversitat Jaume ICastellóSpain
  2. 2.Departamento de Geometría y TopologíaUniversidad de ValenciaValenciaSpain

Personalised recommendations