Advertisement

Journal of Computer Science and Technology

, Volume 33, Issue 3, pp 431–451 | Cite as

Visual Simulation of Multiple Fluids in Computer Graphics: A State-of-the-Art Report

  • Bo Ren
  • Xu-Yun Yang
  • Ming C. Lin
  • Nils Thuerey
  • Matthias Teschner
  • Chenfeng Li
Survey
  • 32 Downloads

Abstract

Realistic animation of various interactions between multiple fluids, possibly undergoing phase change, is a challenging task in computer graphics. The visual scope of multi-phase multi-fluid phenomena covers complex tangled surface structures and rich color variations, which can greatly enhance visual effect in graphics applications. Describing such phenomena requires more complex models to handle challenges involving the calculation of interactions, dynamics and spatial distribution of multiple phases, which are often involved and hard to obtain real-time performance. Recently, a diverse set of algorithms have been introduced to implement the complex multi-fluid phenomena based on the governing physical laws and novel discretization methods to accelerate the overall computation while ensuring numerical stability. By sorting through the target phenomena of recent research in the broad subject of multiple fluids, this state-of-the-art report summarizes recent advances on multi-fluid simulation in computer graphics.

Keywords

physical simulation multiple fluids computer graphics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

11390_2018_1829_MOESM1_ESM.pdf (299 kb)
ESM 1 (PDF 298 kb)

References

  1. 1.
    Kass M, Miller G. Rapid, stable fluid dynamics for computer graphics. ACM SIGGRAPH Computer Graphics, 1990, 24(4): 49–57.CrossRefGoogle Scholar
  2. 2.
    Foster N, Metaxas D. Realistic animation of liquids. Graphical Models and Image Processing, 1996, 58(5): 471–483.CrossRefGoogle Scholar
  3. 3.
    Stam J. Stable fluids. In Proc. the 26th Annu. Conf. Computer Graphics and Interactive Techniques, August 1999, pp.121-128.Google Scholar
  4. 4.
    Foster N, Fedkiw R. Practical animation of liquids. In Proc. the 28th Annu. Conf. Computer Graphics and Interactive Techniques, August 2001, pp.23-30.Google Scholar
  5. 5.
    Carlson M, Mucha P J, van Horn III R B, Turk G. Melting and owing. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, July 2002, pp.167-174.Google Scholar
  6. 6.
    Nguyen D Q, Fedkiw R, Jensen HW. Physically based modeling and animation of fire. ACM Trans. Graphics, 2002, 21(3): 721–728.CrossRefGoogle Scholar
  7. 7.
    Bridson R. Fluid Simulation for Computer Graphics (2nd edition). CRC Press, 2015.Google Scholar
  8. 8.
    Ihmsen M, Orthmann J, Solenthaler B et al. SPH fluids in computer graphics. In Proc. the 35th Annual Conf. the European Association for Computer Graphics, April 2014.Google Scholar
  9. 9.
    Gissler C, Band S, Peer A, Ihmsen M, Teschner M. Generalized drag force for particle-based simulations. Computers & Graphics, 2017, 69: 1–11.CrossRefGoogle Scholar
  10. 10.
    Keiser R, Adams B, Gasser D, Bazzi P, Dutré P, Gross M. A unified Lagrangian approach to solid–fluid animation. In Proc. the 2nd Eurographics/IEEE VGTC Conf. Point-Based Graphics, June 2005, pp.125-133.Google Scholar
  11. 11.
    Cornelis J, Ihmsen M, Peer A, Teschner M. Liquid boundaries for implicit incompressible SPH. Computers & Graphics, 2015, 52: 72–78.CrossRefGoogle Scholar
  12. 12.
    Losasso F, Shinar T, Selle A, Fedkiw R. Multiple interacting liquids. ACM Trans. Graphics, 2006, 25(3): 812–819.CrossRefGoogle Scholar
  13. 13.
    Kim B. Multi-phase fluid simulations using regional level sets. ACM Trans. Graphics, 2010, 29(6): Article No. 175.Google Scholar
  14. 14.
    Solenthaler B, Pajarola R. Density contrast SPH interfaces. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, July 2008, pp.211-218.Google Scholar
  15. 15.
    Boyd L, Bridson R. MultiFLIP for energetic two-phase fluid simulation. ACM Trans. Graphics, 2012, 31(2): Article No. 16.Google Scholar
  16. 16.
    Zhu H B, Bao K, Wu E H, Liu X H. Stable and efficient miscible liquid-liquid interactions. In Proc. ACM Symp. Virtual Reality Software and Technology, November 2007, pp.55-64.Google Scholar
  17. 17.
    Nielsen M B, Østerby O. A two-continua approach to Eulerian simulation of water spray. ACM Trans. Graphics, 2013, 32(4): Article No. 67.Google Scholar
  18. 18.
    Ren B, Li C F, Yan X, Lin M C, Bonet J, Hu S M. Multiplefluid SPH simulation using a mixture model. ACM Trans. Graphics, 2014, 33(5): Article No. 171.Google Scholar
  19. 19.
    Busaryev O, Dey T K, Wang H M, Ren Z. Animating bubble interactions in a liquid foam. ACM Trans. Graphics, 2012, 31(4): Article No. 63.Google Scholar
  20. 20.
    Patkar S, Aanjaneya M, Karpman D, Fedkiw R. A hybrid Lagrangian–Eulerian formulation for bubble generation and dynamics. In Proc. the 12th ACM SIGGRAPH/Eurographics Symp. Computer Animation, July 2013, pp.105-114.Google Scholar
  21. 21.
    21] Kang B, Jang Y, Ihm I. Animation of chemically reactive fluids using a hybrid simulation method. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2007, pp.199-208.Google Scholar
  22. 22.
    Wojtan C, Carlson M, Mucha P J, Turk G. Animating corrosion and erosion. In Proc. the 3rd Eurographics Conf. Natural Phenomena, January 2007, pp.15-22.Google Scholar
  23. 23.
    Ren B, Yuan T L, Li C F, Xu K, Hu S M. Real-time high-fidelity surface flow simulation. IEEE Trans. Visualization and Computer Graphics, 2017, doi: 10.1109/TVCG.2017.2720672.Google Scholar
  24. 24.
    Losasso F, Irving G, Guendelman E, Fedkiw R. Melting and burning solids into liquids and gases. IEEE Trans. Visualization and Computer Graphics, 2006, 12(3): 343–352.CrossRefGoogle Scholar
  25. 25.
    Miao Y B, Xiao S J. Particle-based ice freezing simulation. In Proc. the 14th ACM SIGGRAPH Int. Conf. Virtual Reality Continuum and Its Applications in Industry, October 2015, pp.17-22.Google Scholar
  26. 26.
    Kim T, Carlson M. A simple boiling module. In Proc. the ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2007, pp.27-34.Google Scholar
  27. 27.
    Prakash M, Cleary P W, Pyo S H, Woolard F. A new approach to boiling simulation using a discrete particle based method. Computers & Graphics, 2015, 53: 118–126.CrossRefGoogle Scholar
  28. 28.
    Batchelor G K. An Introduction to Fluid Dynamics (2nd edition). Cambridge University Press, 2000.Google Scholar
  29. 29.
    Zhu Y N, Bridson R. Animating sand as a fluid. ACM Trans. Graphics, 2005, 24(3): 965–972.CrossRefGoogle Scholar
  30. 30.
    Enright D, Fedkiw R, Ferziger J, Mitchell I. A hybrid particle level set method for improved interface capturing. Journal of Computational Physics, 2002, 183(1): 83–116.MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Hong J M, Kim C H. Discontinuous fluids. ACM Trans. Graphics, 2005, 24(3): 915–920.CrossRefGoogle Scholar
  32. 32.
    Manninen M, Taivassalo V, Kallio S. On the mixture model for multiphase flow. 1996. http://www.vtt.fi/inf/pdf/publications/1996/P288.pdf, April 2018.
  33. 33.
    Kang N, Park J, Noh J, Shin S Y. A hybrid approach to multiple fluid simulation using volume fractions. Computer Graphics Forum, 2010, 29(2): 685–694.CrossRefGoogle Scholar
  34. 34.
    Ihm I, Kang B, Cha D. Animation of reactive gaseous fluids through chemical kinetics. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2004, pp.203-212.Google Scholar
  35. 35.
    Yang T, Chang J, Ren B, Lin M C, Zhang J J, Hu S M. Fast multiple-fluid simulation using Helmholtz free energy. ACM Trans. Graphics, 2015, 34(6): Article No. 201.Google Scholar
  36. 36.
    Zheng W, Yong J H, Paul J C. Simulation of bubbles. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, September 2006, pp.325-333.Google Scholar
  37. 37.
    Hong J M, Kim C H. Animation of bubbles in liquid. Computer Graphics Forum, 2003, 22(3): 253–262.CrossRefGoogle Scholar
  38. 38.
    Mihalef V, Unlusu B, Metaxas D, Sussman M, Hussaini M Y. Physics-based boiling simulation. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, September 2006, pp.317-324.Google Scholar
  39. 39.
    Premžoe S, Tasdizen T, Bigler J, Lefohn A, Whitaker R T. Particle-based simulation of fluids. Computer Graphics Forum, 2003, 22(3): 401–410.CrossRefGoogle Scholar
  40. 40.
    Yan X, Jiang Y T, Li C F, Martin R R, Hu S M. Multiphase SPH simulation for interactive fluids and solids. ACM Trans. Graphics, 2016, 35(4): Article No. 79.Google Scholar
  41. 41.
    Müller M, Charypar D, Gross M. Particle-based fluid simulation for interactive applications. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, July 2003, pp.154-159.Google Scholar
  42. 42.
    Becker M, Teschner M. Weakly compressible SPH for free surface flows. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2007, pp.209-217.Google Scholar
  43. 43.
    Solenthaler B, Pajarola R. Predictive-corrective incompressible SPH. ACM Trans. Graphics, 2009, 28(3): Article No. 40.Google Scholar
  44. 44.
    Macklin M, M¨uller M, Chentanez N, Kim T Y. Unified particle physics for real-time applications. ACM Trans. Graphics, 2014, 33(4): Article No. 153.Google Scholar
  45. 45.
    Bender J, Müller M, Otaduy M, Teschner M, Macklin M. A survey on position-based simulation methods in computer graphics. Computer Graphics Forum, 2014, 33(6): 228–251.CrossRefGoogle Scholar
  46. 46.
    Ihmsen M, Cornelis J, Solenthaler B, Horvath C, Teschner M. Implicit incompressible SPH. IEEE Trans. Visualization and Computer Graphics, 2014, 20(3): 426–435.CrossRefGoogle Scholar
  47. 47.
    Cornelis J, Ihmsen M, Peer A, Teschner M. IISPH-FLIP for incompressible fluids. Computer Graphics Forum, 2014, 33(2): 255–262.CrossRefGoogle Scholar
  48. 48.
    Jiang Y T, Yang T, Chang J. Solid deformation by material point method. Communications in Information and Systems, 2016, 16(3): 127–146.MathSciNetCrossRefGoogle Scholar
  49. 49.
    Stomakhin A, Schroeder C, Jiang C F F, Chai L, Teran J, Selle A. Augmented MPM for phase-change and varied materials. ACM Trans. Graphics, 2014, 33(4): Article No. 138.Google Scholar
  50. 50.
    Tampubolon A P, Gast T, Klár G, Fu C Y, Teran J, Jiang C F F, Museth K. Multi-species simulation of porous sand and water mixtures. ACM Trans. Graphics, 2017, 36(4): Article No. 105.Google Scholar
  51. 51.
    Zhao Y, Wang L J, Qiu F, Kaufman A, Mueller K. Melting and flowing in multiphase environment. Computers & Graphics, 2006, 30(4): 519–528.CrossRefGoogle Scholar
  52. 52.
    Park J, Kim Y, Wi D, Kang N, Shin S Y, Noh J. A unified handling of immiscible and miscible fluids. Computer Animation and Virtual Worlds, 2008, 19(3/4): 455–467.CrossRefGoogle Scholar
  53. 53.
    Guo Y L, Liu X P, Xu X M. A unified detail-preserving liquid simulation by two-phase lattice Boltzmann modeling. IEEE Trans. Visualization and Computer Graphics, 2017, 23(5): 1479–1491.CrossRefGoogle Scholar
  54. 54.
    Bronson J, Levine J A, Whitaker R. Lattice cleaving: A multimaterial tetrahedral meshing algorithm with guarantees. IEEE Trans. Visualization and Computer Graphics, 2014, 20(2): 223–237.CrossRefGoogle Scholar
  55. 55.
    Bao K, Wu X L, Zhang H, Wu E H. Volume fraction based miscible and immiscible fluid animation. Computer Animation and Virtual Worlds, 2010, 21(3/4): 401–410.Google Scholar
  56. 56.
    Misztal M K, Erleben K, Bargteil A et al. Multiphase flow of immiscible fluids on unstructured moving meshes. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, July 2012, pp.97-106.Google Scholar
  57. 57.
    Da F, Batty C, Grinspun E. Multimaterial mesh-based surface tracking. ACM Trans. Graphics, 2014, 33(4): Article No. 112.Google Scholar
  58. 58.
    Kim B, Liu Y J, Llamas I, Rossignac J. Advections with significantly reduced dissipation and diffusion. IEEE Trans. Visualization and Computer Graphics, 2007, 13(1): 135-144.CrossRefGoogle Scholar
  59. 59.
    Zheng W, Yong J H, Paul J C. Visual simulation of multiple unmixable fluids. Journal of Computer Science and Technology, 2007, 22(1): 156–160.CrossRefGoogle Scholar
  60. 60.
    Long B, Reinhard E. Real-time fluid simulation using discrete sine/cosine transforms. In Proc. Symp. Interactive 3D Graphics and Games, February 2009, pp.99-106.Google Scholar
  61. 61.
    Mao H, Yang Y H. Particle-based immiscible fluid-fluid collision. In Proc. Graphics Interface 2006, June 2006, pp.49-55.Google Scholar
  62. 62.
    Müller M, Solenthaler B, Keiser R, Gross M. Particlebased fluid-fluid interaction. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, July 2005, pp.237-244.Google Scholar
  63. 63.
    Akinci N, Ihmsen M, Akinci G, Solenthaler B, Teschner M. Versatile rigid-fluid coupling for incompressible SPH. ACM Trans. Graphics, 2012, 31(4): Article No. 62.Google Scholar
  64. 64.
    Solenthaler B, Gross M. Two-scale particle simulation. ACM Trans. Graphics, 2011, 30(4): Article No. 81.Google Scholar
  65. 65.
    Solenthaler B, Schläfli J, Pajarola R. A unified particle model for fluid–solid interactions. Computer Animation and Virtual Worlds, 2007, 18(1): 69–82.CrossRefGoogle Scholar
  66. 66.
    de Goes F,Wallez C, Huang J, Pavlov D, Desbrun M. Power particles: An incompressible fluid solver based on power diagrams. ACM Trans. Graphics, 2015, 34(4): Article No. 50.Google Scholar
  67. 67.
    Alduán I, Tena A, Otaduy M A. DYVERSO: A versatile multiphase position-based fluids solution for VFX. Computer Graphics Forum, 2017, 36(8). http://diglib.eg.org/handle/10.1111/cgf12992, Mar. 2018.
  68. 68.
    Ando R, Thuerey N, Wojtan C. A stream function solver for liquid simulations. ACM Trans. Graphics, 2015, 34(4): Article No. 53.Google Scholar
  69. 69.
    Clausen P, Wicke M, Shewchuk J R, O’Brien J F. Simulating liquids and solid–liquid interactions with Lagrangian meshes. ACM Trans. Graphics, 2013, 32(2): Article No. 17.Google Scholar
  70. 70.
    Li X S, He X W, Liu X H, Liu B Q, Wu E H. Multiphase surface tracking with explicit contouring. In Proc. the 20th ACM Symp. Virtual Reality Software and Technology, November 2014, pp.31-40.Google Scholar
  71. 71.
    Liu S G, Liu Q G, Peng Q S. Realistic simulation of mixing fluids. The Visual Computer, 2011, 27(3): 241–248.MathSciNetCrossRefGoogle Scholar
  72. 72.
    Orthmann J, Hochstetter H, Bader J, Bayraktar S, Kolb A. Consistent surface model for SPH-based fluid transport. In Proc. the 12th ACM SIGGRAPH/Eurographics Symp. Computer Animation, July 2013, pp.95-103.Google Scholar
  73. 73.
    Shin S H, Kam H R, Kim C H. Hybrid simulation of miscible mixing with viscous fingering. Computer Graphics Forum, 2010, 29(2): 675–683.CrossRefGoogle Scholar
  74. 74.
    Chu N S H, Tai C L. MoXi: Real-time ink dispersion in absorbent paper. ACM Trans. Graphics, 2005, 24(3): 504-511.CrossRefGoogle Scholar
  75. 75.
    Xu S B, Mei X, Dong W M, Zhang Z Y, Zhang X P. Interactive visual simulation of dynamic ink diffusion effects. In Proc. the 10th Int. Conf. Virtual Reality Continuum and Its Applications in Industry, December 2011, pp.109-116.Google Scholar
  76. 76.
    Xu S B, Mei X, Dong W M, Zhang Z Y, Zhang X P. Realtime ink simulation using a grid-particle method. Computers & Graphics, 2012, 36(8): 1025–1035CrossRefGoogle Scholar
  77. 77.
    Yang T, Chang J, Lin M C, Martin R R, Zhang J J, Hu S M. A unified particle system framework for multi-phase, multi-material visual simulations. ACM Trans. Graphics, 2017, 36(6): Article No. 224.Google Scholar
  78. 78.
    Zhu H B, Liu X H, Liu Y Q, Wu E H. Simulation of miscible binary mixtures based on lattice Boltzmann method. Computer Animation and Virtual Worlds, 2006, 17(3/4): 403–410.CrossRefGoogle Scholar
  79. 79.
    Mullen P, McKenzie A, Tong Y Y, Desbrun M. A variational approach to Eulerian geometry processing. In Proc. ACM SIGGRAPH 2007 Papers, August 2007.Google Scholar
  80. 80.
    Wang H M, Zhang F J, Wang H A, Wang G P, Zhou K, Wu E H. Simulation of fluid mixing with interface control. In Proc. the 14th ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2015, pp.129-135.Google Scholar
  81. 81.
    Kim B, Liu Y J, Llamas I, Jiao X M, Rossignac J. Simulation of bubbles in foam with the volume control method. In Proc. ACM SIGGRAPH 2007 Papers, August 2007.Google Scholar
  82. 82.
    Song O Y, Shin H, Ko H S. Stable but nondissipative water. ACM Trans. Graphics, 2005, 24(1): 81–97.CrossRefGoogle Scholar
  83. 83.
    Cho J, Ko H S. Geometry-aware volume-of-fluid method. Computer Graphics Forum, 2013, 32(2 Pt 3): 379–388.CrossRefGoogle Scholar
  84. 84.
    Greenwood S T, House D H. Better with bubbles: Enhancing the visual realism of simulated fluid. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2004, pp.287-296.Google Scholar
  85. 85.
    Mihalef V, Metaxas D, Sussman M. Simulation of two-phase flow with sub-scale droplet and bubble effects. Computer Graphics Forum, 2009, 28(2): 229–238.CrossRefGoogle Scholar
  86. 86.
    Cleary P W, Pyo S H, Prakash M, Koo B K. Bubbling and frothing liquids. In Proc. ACM SIGGRAPH 2007 Papers, August 2007.Google Scholar
  87. 87.
    Lee H Y, Hong J M, Kim C H. Simulation of swirling bubbly water using bubble particles. The Visual Computer, 2009, 25(5/6/7): 707–712.Google Scholar
  88. 88.
    Kück H, Vogelgsang C, Greiner G. Simulation and rendering of liquid foams. In Proc. Graphics Interface 2002, May 2002, pp.81-88.Google Scholar
  89. 89.
    Kim D, Song O Y, Ko H S. A practical simulation of dispersed bubble flow. In Proc. ACM SIGGRAPH 2010 Papers, July 2010, Article No. 70.Google Scholar
  90. 90.
    Shao X Q, Zhou Z,WuW. Particle-based simulation of bubbles in water-solid interaction. Computer Animation and Virtual Worlds, 2012, 23(5): 477–487.CrossRefGoogle Scholar
  91. 91.
    Ihmsen M, Bader J, Akinci G, Teschner M. Animation of air bubbles with SPH. In Proc. Int. Conf. Computer Graphics Theory and Applications, March 2011, pp.225-234.Google Scholar
  92. 92.
    Yue Y H, Smith B, Batty C, Zheng C X, Grinspun E. Continuum foam: A material point method for shear-dependent flows. ACM Trans. Graphics, 2015, 34(5): Article No. 160.Google Scholar
  93. 93.
    Ram D, Gast T, Jiang C F F, Schroeder C, Stomakhin A, Teran J, Kavehpour P. A material point method for viscoelastic fluids, foams and sponges. In Proc. the 14th ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2015, pp.157-163.Google Scholar
  94. 94.
    Hong J M, Lee H Y, Yoon J C, Kim C H. Bubbles alive. In Proc. ACM SIGGRAPH 2008 Papers, August 2008, Article No. 48.Google Scholar
  95. 95.
    Kim P R, Lee H Y, Kim J H, Kim C H. Controlling shapes of air bubbles in a multi-phase fluid simulation. The Visual Computer, 2012, 28(6/7/8): 597–602.Google Scholar
  96. 96.
    Yang T, Martin R R, Lin M C, Chang J, Hu S M. Pairwise force SPH model for real-time multi-interaction applications. IEEE Trans. Visualization and Computer Graphics, 2017, 23(10): 2235–2247.CrossRefGoogle Scholar
  97. 97.
    Takahashi T, Fujii H, Kunimatsu A et al. Realistic animation of fluid with splash and foam. Computer Graphics Forum, 2003, 22(3): 391–400.CrossRefGoogle Scholar
  98. 98.
    Chentanez N, M¨uller M. Real-time Eulerian water simulation using a restricted tall cell grid. ACM Trans. Graphics, 2011, 30(4): Article No. 82.Google Scholar
  99. 99.
    Kim J, Cha D, Chang B, Koo B, Ihm I. Practical animation of turbulent splashing water. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, September 2006, pp.335-344.Google Scholar
  100. 100.
    Yang L P, Li S, Hao A M, Qin H. Hybrid particle-grid modeling for multi-scale droplet/spray simulation. Computer Graphics Forum, 2014, 33(7): 199–208.CrossRefGoogle Scholar
  101. 101.
    Kim J H, Kim W, Lee J. Physics-inspired approach to realistic and stable water spray with narrowband air particles. The Visual Computer, 2018, 34(4): 461–471.CrossRefGoogle Scholar
  102. 102.
    Ihmsen M, Akinci N, Akinci G, Teschner M. Unified spray, foam and air bubbles for particle-based fluids. The Visual Computer, 2012, 28(6/7/8): 669–677.Google Scholar
  103. 103.
    Yang L P, Li S, Xia Q et al. A novel integrated analysis-andsimulation approach for detail enhancement in FLIP fluid interaction. In Proc. the 21st ACM Symp. Virtual Reality Software and Technology, November 2015, pp.103-112.Google Scholar
  104. 104.
    Ren B, Jiang Y T, Li C F, Lin M C. A simple approach for bubble modelling from multiphase fluid simulation. Computational Visual Media, 2015, 1(2): 171–181.CrossRefGoogle Scholar
  105. 105.
    Akinci N, Dippel A, Akinci G, Teschner M. Screen space foam rendering. Journal of WSCG, 2013, 21(3): 173–182.Google Scholar
  106. 106.
    Nürey T, Sadlo F, Schirm S, Müller-Fischer M, Gross M. Real-time simulations of bubbles and foam within a shallow water framework. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2007, pp.191-198.Google Scholar
  107. 107.
    Zhu B, Quigley E, Cong M, Solomon J, Fedkiw R. Codimensional surface tension flow on simplicial complexes. ACM Trans. Graphics, 2014, 33(4): Article No. 111.Google Scholar
  108. 108.
    Da F, Batty C, Wojtan C, Grinspun E. Double bubbles sans toil and trouble: Discrete circulation-preserving vortex sheets for soap films and foams. ACM Trans. Graphics, 2015, 34(4): Article No. 149.Google Scholar
  109. 109.
    Ishida S, Yamamoto M, Ando R, Hachisuka T. A hyperbolic geometric flow for evolving films and foams. ACM Trans. Graphics, 2017, 36(6): Article No. 199.Google Scholar
  110. 110.
    Yang T, Lin M C, Martin R R, Chang J, Hu S M. Versatile interactions at interfaces for SPH-based simulations. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, July 2016, pp.57-66.Google Scholar
  111. 111.
    Wang X K, Ban X J, Zhang Y L, Liu S N, Ye P F. Surface tension model based on implicit incompressible smoothed particle hydrodynamics for fluid simulation. Journal of Computer Science and Technology, 2017, 32(6): 1186–1197.MathSciNetCrossRefGoogle Scholar
  112. 112.
    Beneš B. Physically-based hydraulic erosion. In Proc. the 22nd Spring Conf. Computer Graphics, April 2006, pp.17-22.Google Scholar
  113. 113.
    Lenaerts T, Dutré P. Mixing fluids and granular materials. Computer Graphics Forum, 2009, 28(2): 213–218.CrossRefGoogle Scholar
  114. 114.
    Baek S, Um K, Han J. Muddy water animation with different details. Computer Animation and Virtual Worlds, 2015, 26(3/4): 347–355.CrossRefGoogle Scholar
  115. 115.
    Acar R, Boulanger P. Digital marbling: A multiscale fluid model. IEEE Trans. Visualization and Computer Graphics, 2006, 12(4): 600–614.CrossRefGoogle Scholar
  116. 116.
    Feldman B E, O’Brien J F, Arikan O. Animating suspended particle explosions. ACM Trans. Graphics, 2003, 22(3): 708–715.CrossRefMATHGoogle Scholar
  117. 117.
    Nishino T, Iwasaki K, Dobashi Y, Nishita T. Visual simulation of freezing ice with air bubbles. In Proc. SIGGRAPH Asia 2012 Technical Briefs, December 2012, Article No. 1.Google Scholar
  118. 118.
    Harris M J. Real-time cloud simulation and rendering [Ph.D. Thesis]. The University of North Carolina at Chapel Hill, 2003.Google Scholar
  119. 119.
    Miyazaki R, Dobashi Y, Nishita T. Simulation of cumuliform clouds based on computational fluid dynamics. In Proc. Eurographics 2002 Short Presentation, January 2002, pp.405-410.Google Scholar
  120. 120.
    Dobashi Y, Kusumoto K, Nishita T, Yamamoto T. Feedback control of cumuliform cloud formation based on computational fluid dynamics. ACM Trans. Graphics, 2008, 27(3): Article No. 94.Google Scholar
  121. 121.
    Kawaguchi T, Dobashi Y, Yamamoto T. Controlling the simulation of cumuliform clouds based on fluid dynamics. IEICE Trans. Information and Systems, 2015, E98-D(11): 2034–2037.CrossRefGoogle Scholar
  122. 122.
    Mizuno R, Dobashi Y, Chen B Y, Nishita T. Physics motivated modeling of volcanic clouds as a two fluids model. In Proc. the 11th Pacific Conf. Computer Graphics and Applications, October 2003.Google Scholar
  123. 123.
    Ren B, Yan X, Yang T, Li C F, Lin M C, Hu S M. Fast SPH simulation for gaseous fluids. The Visual Computer, 2016, 32(4): 523–534.CrossRefGoogle Scholar
  124. 124.
    Müller M, Keiser R, Nealen A, Pauly M, Gross M, Alexa M. Point based animation of elastic, plastic and melting objects. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2004, pp.141-151.Google Scholar
  125. 125.
    Chang Y Z, Bao K, Liu Y Q, Zhu J, Wu E H. A particlebased method for viscoelastic fluids animation. In Proc. the 16th ACM Symp. Virtual Reality Software and Technology, November 2009, pp.111-117.Google Scholar
  126. 126.
    Fujisawa M, Miura K T. Animation of ice melting phenomenon based on thermodynamics with thermal radiation. In Proc. the 5th Int. Conf. Computer Graphics and Interactive Techniques in Australia and Southeast Asia, December 2007, pp.249-256.Google Scholar
  127. 127.
    Gao Y, Li S, Qin H, Hao A M. A novel fluid–solid coupling framework integrating FLIP and shape matching methods. In Proc. Computer Graphics Int. Conf., June 2017, Article No. 11.Google Scholar
  128. 128.
    Kim T, Lin M C. Visual simulation of ice crystal growth. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, July 2003, pp.86-97.Google Scholar
  129. 129.
    Kim T, Henson M, Lin M C. A hybrid algorithm for modeling ice formation. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2004, pp.305-314.Google Scholar
  130. 130.
    Kim T, Adalsteinsson D, Lin M C. Modeling ice dynamics as a thin-film Stefan problem. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, September 2006, pp.167-176.Google Scholar
  131. 131.
    Stam J, Fiume E. Depicting fire and other gaseous phenomena using diffusion processes. In Proc. the 22nd Annu. Conf. Computer Graphics and Interactive Techniques, June 1995, pp.129-136.Google Scholar
  132. 132.
    Yngve G D, O’Brien J F, Hodgins J K. Animating explosions. In Proc. the 27th Annu. Conf. Computer Graphics and Interactive Techniques, July 2000, pp.29-36.Google Scholar
  133. 133.
    Lamorlette A, Foster N. Structural modeling of flames for a production environment. ACM Trans. Graphics, 2002, 21(3): 729–735.CrossRefGoogle Scholar
  134. 134.
    Wei X M, Li W, Mueller K, Kaufman A. Simulating fire with texture splats. In Proc. Conf. Visualization, October 2002, pp.227-235.Google Scholar
  135. 135.
    Kawada G, Kanai T. Procedural fluid modeling of explosion phenomena based on physical properties. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2011, pp.167-176.Google Scholar
  136. 136.
    Kim T, Lee J, Kim C H. Physics-inspired controllable flame animation. The Visual Computer, 2016, 32(6/7/8): 871-880.Google Scholar
  137. 137.
    Kim T, Hong E, Im J, Yang D, Kim Y, Kim C H. Visual simulation of fire-flakes synchronized with flame. The Visual Computer, 2017, 33(6/7/8): 1029–1038.Google Scholar
  138. 138.
    Kwatra V, Adalsteinsson D, Kim T, Kwatra N, Carlson M, Lin M. Texturing fluids. IEEE Trans. Visualization and Computer Graphics, 2007, 13(5): 939–952.CrossRefGoogle Scholar
  139. 139.
    Narain R, Kwatra V, Lee H P, Kim T, Carlson M, Lin M C. Feature-guided dynamic texture synthesis on continuous flows. In Proc. the 18th Eurographics Conf. Rendering Techniques, June 2007, pp.361-370.Google Scholar
  140. 140.
    Gregson J, Krimerman M, Hullin M B, Heidrich W. Stochastic tomography and its applications in 3D imaging of mixing fluids. ACM Trans. Graphics, 2012, 31(4): Article No. 52.Google Scholar
  141. 141.
    Gregson J, Ihrke I, Thuerey N, Heidrich W. From capture to simulation: Connecting forward and inverse problems in fluids. ACM Trans. Graphics, 2014, 33(4): Article No. 139.Google Scholar
  142. 142.
    Okabe M, Dobashi Y, Anjyo K, Onai R. Fluid volume modeling from sparse multi-view images by appearance transfer. ACM Trans. Graphics, 2015, 34(4): Article No. 93.Google Scholar
  143. 143.
    Wang H M, Liao M, Zhang Q, Yang R G, Turk G. Physically guided liquid surface modeling from videos. ACM Trans. Graphics, 2009, 28(3): Article No. 90.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Bo Ren
    • 1
  • Xu-Yun Yang
    • 1
  • Ming C. Lin
    • 2
  • Nils Thuerey
    • 3
  • Matthias Teschner
    • 4
  • Chenfeng Li
    • 5
  1. 1.College of Computer and Control EngineeringNankai UniversityTianjinChina
  2. 2.Department of Computer ScienceUniversity of MarylandCollege ParkUSA
  3. 3.Department of InformaticsTechnical University of MunichMunichGermany
  4. 4.Department of Computer ScienceUniversity of FreiburgFreiburgGermany
  5. 5.College of EngineeringSwansea UniversitySwanseaUK

Personalised recommendations