Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Visual Simulation of Multiple Fluids in Computer Graphics: A State-of-the-Art Report

Abstract

Realistic animation of various interactions between multiple fluids, possibly undergoing phase change, is a challenging task in computer graphics. The visual scope of multi-phase multi-fluid phenomena covers complex tangled surface structures and rich color variations, which can greatly enhance visual effect in graphics applications. Describing such phenomena requires more complex models to handle challenges involving the calculation of interactions, dynamics and spatial distribution of multiple phases, which are often involved and hard to obtain real-time performance. Recently, a diverse set of algorithms have been introduced to implement the complex multi-fluid phenomena based on the governing physical laws and novel discretization methods to accelerate the overall computation while ensuring numerical stability. By sorting through the target phenomena of recent research in the broad subject of multiple fluids, this state-of-the-art report summarizes recent advances on multi-fluid simulation in computer graphics.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Kass M, Miller G. Rapid, stable fluid dynamics for computer graphics. ACM SIGGRAPH Computer Graphics, 1990, 24(4): 49–57.

  2. 2.

    Foster N, Metaxas D. Realistic animation of liquids. Graphical Models and Image Processing, 1996, 58(5): 471–483.

  3. 3.

    Stam J. Stable fluids. In Proc. the 26th Annu. Conf. Computer Graphics and Interactive Techniques, August 1999, pp.121-128.

  4. 4.

    Foster N, Fedkiw R. Practical animation of liquids. In Proc. the 28th Annu. Conf. Computer Graphics and Interactive Techniques, August 2001, pp.23-30.

  5. 5.

    Carlson M, Mucha P J, van Horn III R B, Turk G. Melting and owing. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, July 2002, pp.167-174.

  6. 6.

    Nguyen D Q, Fedkiw R, Jensen HW. Physically based modeling and animation of fire. ACM Trans. Graphics, 2002, 21(3): 721–728.

  7. 7.

    Bridson R. Fluid Simulation for Computer Graphics (2nd edition). CRC Press, 2015.

  8. 8.

    Ihmsen M, Orthmann J, Solenthaler B et al. SPH fluids in computer graphics. In Proc. the 35th Annual Conf. the European Association for Computer Graphics, April 2014.

  9. 9.

    Gissler C, Band S, Peer A, Ihmsen M, Teschner M. Generalized drag force for particle-based simulations. Computers & Graphics, 2017, 69: 1–11.

  10. 10.

    Keiser R, Adams B, Gasser D, Bazzi P, Dutré P, Gross M. A unified Lagrangian approach to solid–fluid animation. In Proc. the 2nd Eurographics/IEEE VGTC Conf. Point-Based Graphics, June 2005, pp.125-133.

  11. 11.

    Cornelis J, Ihmsen M, Peer A, Teschner M. Liquid boundaries for implicit incompressible SPH. Computers & Graphics, 2015, 52: 72–78.

  12. 12.

    Losasso F, Shinar T, Selle A, Fedkiw R. Multiple interacting liquids. ACM Trans. Graphics, 2006, 25(3): 812–819.

  13. 13.

    Kim B. Multi-phase fluid simulations using regional level sets. ACM Trans. Graphics, 2010, 29(6): Article No. 175.

  14. 14.

    Solenthaler B, Pajarola R. Density contrast SPH interfaces. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, July 2008, pp.211-218.

  15. 15.

    Boyd L, Bridson R. MultiFLIP for energetic two-phase fluid simulation. ACM Trans. Graphics, 2012, 31(2): Article No. 16.

  16. 16.

    Zhu H B, Bao K, Wu E H, Liu X H. Stable and efficient miscible liquid-liquid interactions. In Proc. ACM Symp. Virtual Reality Software and Technology, November 2007, pp.55-64.

  17. 17.

    Nielsen M B, Østerby O. A two-continua approach to Eulerian simulation of water spray. ACM Trans. Graphics, 2013, 32(4): Article No. 67.

  18. 18.

    Ren B, Li C F, Yan X, Lin M C, Bonet J, Hu S M. Multiplefluid SPH simulation using a mixture model. ACM Trans. Graphics, 2014, 33(5): Article No. 171.

  19. 19.

    Busaryev O, Dey T K, Wang H M, Ren Z. Animating bubble interactions in a liquid foam. ACM Trans. Graphics, 2012, 31(4): Article No. 63.

  20. 20.

    Patkar S, Aanjaneya M, Karpman D, Fedkiw R. A hybrid Lagrangian–Eulerian formulation for bubble generation and dynamics. In Proc. the 12th ACM SIGGRAPH/Eurographics Symp. Computer Animation, July 2013, pp.105-114.

  21. 21.

    21] Kang B, Jang Y, Ihm I. Animation of chemically reactive fluids using a hybrid simulation method. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2007, pp.199-208.

  22. 22.

    Wojtan C, Carlson M, Mucha P J, Turk G. Animating corrosion and erosion. In Proc. the 3rd Eurographics Conf. Natural Phenomena, January 2007, pp.15-22.

  23. 23.

    Ren B, Yuan T L, Li C F, Xu K, Hu S M. Real-time high-fidelity surface flow simulation. IEEE Trans. Visualization and Computer Graphics, 2017, doi: 10.1109/TVCG.2017.2720672.

  24. 24.

    Losasso F, Irving G, Guendelman E, Fedkiw R. Melting and burning solids into liquids and gases. IEEE Trans. Visualization and Computer Graphics, 2006, 12(3): 343–352.

  25. 25.

    Miao Y B, Xiao S J. Particle-based ice freezing simulation. In Proc. the 14th ACM SIGGRAPH Int. Conf. Virtual Reality Continuum and Its Applications in Industry, October 2015, pp.17-22.

  26. 26.

    Kim T, Carlson M. A simple boiling module. In Proc. the ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2007, pp.27-34.

  27. 27.

    Prakash M, Cleary P W, Pyo S H, Woolard F. A new approach to boiling simulation using a discrete particle based method. Computers & Graphics, 2015, 53: 118–126.

  28. 28.

    Batchelor G K. An Introduction to Fluid Dynamics (2nd edition). Cambridge University Press, 2000.

  29. 29.

    Zhu Y N, Bridson R. Animating sand as a fluid. ACM Trans. Graphics, 2005, 24(3): 965–972.

  30. 30.

    Enright D, Fedkiw R, Ferziger J, Mitchell I. A hybrid particle level set method for improved interface capturing. Journal of Computational Physics, 2002, 183(1): 83–116.

  31. 31.

    Hong J M, Kim C H. Discontinuous fluids. ACM Trans. Graphics, 2005, 24(3): 915–920.

  32. 32.

    Manninen M, Taivassalo V, Kallio S. On the mixture model for multiphase flow. 1996. http://www.vtt.fi/inf/pdf/publications/1996/P288.pdf, April 2018.

  33. 33.

    Kang N, Park J, Noh J, Shin S Y. A hybrid approach to multiple fluid simulation using volume fractions. Computer Graphics Forum, 2010, 29(2): 685–694.

  34. 34.

    Ihm I, Kang B, Cha D. Animation of reactive gaseous fluids through chemical kinetics. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2004, pp.203-212.

  35. 35.

    Yang T, Chang J, Ren B, Lin M C, Zhang J J, Hu S M. Fast multiple-fluid simulation using Helmholtz free energy. ACM Trans. Graphics, 2015, 34(6): Article No. 201.

  36. 36.

    Zheng W, Yong J H, Paul J C. Simulation of bubbles. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, September 2006, pp.325-333.

  37. 37.

    Hong J M, Kim C H. Animation of bubbles in liquid. Computer Graphics Forum, 2003, 22(3): 253–262.

  38. 38.

    Mihalef V, Unlusu B, Metaxas D, Sussman M, Hussaini M Y. Physics-based boiling simulation. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, September 2006, pp.317-324.

  39. 39.

    Premžoe S, Tasdizen T, Bigler J, Lefohn A, Whitaker R T. Particle-based simulation of fluids. Computer Graphics Forum, 2003, 22(3): 401–410.

  40. 40.

    Yan X, Jiang Y T, Li C F, Martin R R, Hu S M. Multiphase SPH simulation for interactive fluids and solids. ACM Trans. Graphics, 2016, 35(4): Article No. 79.

  41. 41.

    Müller M, Charypar D, Gross M. Particle-based fluid simulation for interactive applications. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, July 2003, pp.154-159.

  42. 42.

    Becker M, Teschner M. Weakly compressible SPH for free surface flows. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2007, pp.209-217.

  43. 43.

    Solenthaler B, Pajarola R. Predictive-corrective incompressible SPH. ACM Trans. Graphics, 2009, 28(3): Article No. 40.

  44. 44.

    Macklin M, M¨uller M, Chentanez N, Kim T Y. Unified particle physics for real-time applications. ACM Trans. Graphics, 2014, 33(4): Article No. 153.

  45. 45.

    Bender J, Müller M, Otaduy M, Teschner M, Macklin M. A survey on position-based simulation methods in computer graphics. Computer Graphics Forum, 2014, 33(6): 228–251.

  46. 46.

    Ihmsen M, Cornelis J, Solenthaler B, Horvath C, Teschner M. Implicit incompressible SPH. IEEE Trans. Visualization and Computer Graphics, 2014, 20(3): 426–435.

  47. 47.

    Cornelis J, Ihmsen M, Peer A, Teschner M. IISPH-FLIP for incompressible fluids. Computer Graphics Forum, 2014, 33(2): 255–262.

  48. 48.

    Jiang Y T, Yang T, Chang J. Solid deformation by material point method. Communications in Information and Systems, 2016, 16(3): 127–146.

  49. 49.

    Stomakhin A, Schroeder C, Jiang C F F, Chai L, Teran J, Selle A. Augmented MPM for phase-change and varied materials. ACM Trans. Graphics, 2014, 33(4): Article No. 138.

  50. 50.

    Tampubolon A P, Gast T, Klár G, Fu C Y, Teran J, Jiang C F F, Museth K. Multi-species simulation of porous sand and water mixtures. ACM Trans. Graphics, 2017, 36(4): Article No. 105.

  51. 51.

    Zhao Y, Wang L J, Qiu F, Kaufman A, Mueller K. Melting and flowing in multiphase environment. Computers & Graphics, 2006, 30(4): 519–528.

  52. 52.

    Park J, Kim Y, Wi D, Kang N, Shin S Y, Noh J. A unified handling of immiscible and miscible fluids. Computer Animation and Virtual Worlds, 2008, 19(3/4): 455–467.

  53. 53.

    Guo Y L, Liu X P, Xu X M. A unified detail-preserving liquid simulation by two-phase lattice Boltzmann modeling. IEEE Trans. Visualization and Computer Graphics, 2017, 23(5): 1479–1491.

  54. 54.

    Bronson J, Levine J A, Whitaker R. Lattice cleaving: A multimaterial tetrahedral meshing algorithm with guarantees. IEEE Trans. Visualization and Computer Graphics, 2014, 20(2): 223–237.

  55. 55.

    Bao K, Wu X L, Zhang H, Wu E H. Volume fraction based miscible and immiscible fluid animation. Computer Animation and Virtual Worlds, 2010, 21(3/4): 401–410.

  56. 56.

    Misztal M K, Erleben K, Bargteil A et al. Multiphase flow of immiscible fluids on unstructured moving meshes. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, July 2012, pp.97-106.

  57. 57.

    Da F, Batty C, Grinspun E. Multimaterial mesh-based surface tracking. ACM Trans. Graphics, 2014, 33(4): Article No. 112.

  58. 58.

    Kim B, Liu Y J, Llamas I, Rossignac J. Advections with significantly reduced dissipation and diffusion. IEEE Trans. Visualization and Computer Graphics, 2007, 13(1): 135-144.

  59. 59.

    Zheng W, Yong J H, Paul J C. Visual simulation of multiple unmixable fluids. Journal of Computer Science and Technology, 2007, 22(1): 156–160.

  60. 60.

    Long B, Reinhard E. Real-time fluid simulation using discrete sine/cosine transforms. In Proc. Symp. Interactive 3D Graphics and Games, February 2009, pp.99-106.

  61. 61.

    Mao H, Yang Y H. Particle-based immiscible fluid-fluid collision. In Proc. Graphics Interface 2006, June 2006, pp.49-55.

  62. 62.

    Müller M, Solenthaler B, Keiser R, Gross M. Particlebased fluid-fluid interaction. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, July 2005, pp.237-244.

  63. 63.

    Akinci N, Ihmsen M, Akinci G, Solenthaler B, Teschner M. Versatile rigid-fluid coupling for incompressible SPH. ACM Trans. Graphics, 2012, 31(4): Article No. 62.

  64. 64.

    Solenthaler B, Gross M. Two-scale particle simulation. ACM Trans. Graphics, 2011, 30(4): Article No. 81.

  65. 65.

    Solenthaler B, Schläfli J, Pajarola R. A unified particle model for fluid–solid interactions. Computer Animation and Virtual Worlds, 2007, 18(1): 69–82.

  66. 66.

    de Goes F,Wallez C, Huang J, Pavlov D, Desbrun M. Power particles: An incompressible fluid solver based on power diagrams. ACM Trans. Graphics, 2015, 34(4): Article No. 50.

  67. 67.

    Alduán I, Tena A, Otaduy M A. DYVERSO: A versatile multiphase position-based fluids solution for VFX. Computer Graphics Forum, 2017, 36(8). http://diglib.eg.org/handle/10.1111/cgf12992, Mar. 2018.

  68. 68.

    Ando R, Thuerey N, Wojtan C. A stream function solver for liquid simulations. ACM Trans. Graphics, 2015, 34(4): Article No. 53.

  69. 69.

    Clausen P, Wicke M, Shewchuk J R, O’Brien J F. Simulating liquids and solid–liquid interactions with Lagrangian meshes. ACM Trans. Graphics, 2013, 32(2): Article No. 17.

  70. 70.

    Li X S, He X W, Liu X H, Liu B Q, Wu E H. Multiphase surface tracking with explicit contouring. In Proc. the 20th ACM Symp. Virtual Reality Software and Technology, November 2014, pp.31-40.

  71. 71.

    Liu S G, Liu Q G, Peng Q S. Realistic simulation of mixing fluids. The Visual Computer, 2011, 27(3): 241–248.

  72. 72.

    Orthmann J, Hochstetter H, Bader J, Bayraktar S, Kolb A. Consistent surface model for SPH-based fluid transport. In Proc. the 12th ACM SIGGRAPH/Eurographics Symp. Computer Animation, July 2013, pp.95-103.

  73. 73.

    Shin S H, Kam H R, Kim C H. Hybrid simulation of miscible mixing with viscous fingering. Computer Graphics Forum, 2010, 29(2): 675–683.

  74. 74.

    Chu N S H, Tai C L. MoXi: Real-time ink dispersion in absorbent paper. ACM Trans. Graphics, 2005, 24(3): 504-511.

  75. 75.

    Xu S B, Mei X, Dong W M, Zhang Z Y, Zhang X P. Interactive visual simulation of dynamic ink diffusion effects. In Proc. the 10th Int. Conf. Virtual Reality Continuum and Its Applications in Industry, December 2011, pp.109-116.

  76. 76.

    Xu S B, Mei X, Dong W M, Zhang Z Y, Zhang X P. Realtime ink simulation using a grid-particle method. Computers & Graphics, 2012, 36(8): 1025–1035

  77. 77.

    Yang T, Chang J, Lin M C, Martin R R, Zhang J J, Hu S M. A unified particle system framework for multi-phase, multi-material visual simulations. ACM Trans. Graphics, 2017, 36(6): Article No. 224.

  78. 78.

    Zhu H B, Liu X H, Liu Y Q, Wu E H. Simulation of miscible binary mixtures based on lattice Boltzmann method. Computer Animation and Virtual Worlds, 2006, 17(3/4): 403–410.

  79. 79.

    Mullen P, McKenzie A, Tong Y Y, Desbrun M. A variational approach to Eulerian geometry processing. In Proc. ACM SIGGRAPH 2007 Papers, August 2007.

  80. 80.

    Wang H M, Zhang F J, Wang H A, Wang G P, Zhou K, Wu E H. Simulation of fluid mixing with interface control. In Proc. the 14th ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2015, pp.129-135.

  81. 81.

    Kim B, Liu Y J, Llamas I, Jiao X M, Rossignac J. Simulation of bubbles in foam with the volume control method. In Proc. ACM SIGGRAPH 2007 Papers, August 2007.

  82. 82.

    Song O Y, Shin H, Ko H S. Stable but nondissipative water. ACM Trans. Graphics, 2005, 24(1): 81–97.

  83. 83.

    Cho J, Ko H S. Geometry-aware volume-of-fluid method. Computer Graphics Forum, 2013, 32(2 Pt 3): 379–388.

  84. 84.

    Greenwood S T, House D H. Better with bubbles: Enhancing the visual realism of simulated fluid. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2004, pp.287-296.

  85. 85.

    Mihalef V, Metaxas D, Sussman M. Simulation of two-phase flow with sub-scale droplet and bubble effects. Computer Graphics Forum, 2009, 28(2): 229–238.

  86. 86.

    Cleary P W, Pyo S H, Prakash M, Koo B K. Bubbling and frothing liquids. In Proc. ACM SIGGRAPH 2007 Papers, August 2007.

  87. 87.

    Lee H Y, Hong J M, Kim C H. Simulation of swirling bubbly water using bubble particles. The Visual Computer, 2009, 25(5/6/7): 707–712.

  88. 88.

    Kück H, Vogelgsang C, Greiner G. Simulation and rendering of liquid foams. In Proc. Graphics Interface 2002, May 2002, pp.81-88.

  89. 89.

    Kim D, Song O Y, Ko H S. A practical simulation of dispersed bubble flow. In Proc. ACM SIGGRAPH 2010 Papers, July 2010, Article No. 70.

  90. 90.

    Shao X Q, Zhou Z,WuW. Particle-based simulation of bubbles in water-solid interaction. Computer Animation and Virtual Worlds, 2012, 23(5): 477–487.

  91. 91.

    Ihmsen M, Bader J, Akinci G, Teschner M. Animation of air bubbles with SPH. In Proc. Int. Conf. Computer Graphics Theory and Applications, March 2011, pp.225-234.

  92. 92.

    Yue Y H, Smith B, Batty C, Zheng C X, Grinspun E. Continuum foam: A material point method for shear-dependent flows. ACM Trans. Graphics, 2015, 34(5): Article No. 160.

  93. 93.

    Ram D, Gast T, Jiang C F F, Schroeder C, Stomakhin A, Teran J, Kavehpour P. A material point method for viscoelastic fluids, foams and sponges. In Proc. the 14th ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2015, pp.157-163.

  94. 94.

    Hong J M, Lee H Y, Yoon J C, Kim C H. Bubbles alive. In Proc. ACM SIGGRAPH 2008 Papers, August 2008, Article No. 48.

  95. 95.

    Kim P R, Lee H Y, Kim J H, Kim C H. Controlling shapes of air bubbles in a multi-phase fluid simulation. The Visual Computer, 2012, 28(6/7/8): 597–602.

  96. 96.

    Yang T, Martin R R, Lin M C, Chang J, Hu S M. Pairwise force SPH model for real-time multi-interaction applications. IEEE Trans. Visualization and Computer Graphics, 2017, 23(10): 2235–2247.

  97. 97.

    Takahashi T, Fujii H, Kunimatsu A et al. Realistic animation of fluid with splash and foam. Computer Graphics Forum, 2003, 22(3): 391–400.

  98. 98.

    Chentanez N, M¨uller M. Real-time Eulerian water simulation using a restricted tall cell grid. ACM Trans. Graphics, 2011, 30(4): Article No. 82.

  99. 99.

    Kim J, Cha D, Chang B, Koo B, Ihm I. Practical animation of turbulent splashing water. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, September 2006, pp.335-344.

  100. 100.

    Yang L P, Li S, Hao A M, Qin H. Hybrid particle-grid modeling for multi-scale droplet/spray simulation. Computer Graphics Forum, 2014, 33(7): 199–208.

  101. 101.

    Kim J H, Kim W, Lee J. Physics-inspired approach to realistic and stable water spray with narrowband air particles. The Visual Computer, 2018, 34(4): 461–471.

  102. 102.

    Ihmsen M, Akinci N, Akinci G, Teschner M. Unified spray, foam and air bubbles for particle-based fluids. The Visual Computer, 2012, 28(6/7/8): 669–677.

  103. 103.

    Yang L P, Li S, Xia Q et al. A novel integrated analysis-andsimulation approach for detail enhancement in FLIP fluid interaction. In Proc. the 21st ACM Symp. Virtual Reality Software and Technology, November 2015, pp.103-112.

  104. 104.

    Ren B, Jiang Y T, Li C F, Lin M C. A simple approach for bubble modelling from multiphase fluid simulation. Computational Visual Media, 2015, 1(2): 171–181.

  105. 105.

    Akinci N, Dippel A, Akinci G, Teschner M. Screen space foam rendering. Journal of WSCG, 2013, 21(3): 173–182.

  106. 106.

    Nürey T, Sadlo F, Schirm S, Müller-Fischer M, Gross M. Real-time simulations of bubbles and foam within a shallow water framework. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2007, pp.191-198.

  107. 107.

    Zhu B, Quigley E, Cong M, Solomon J, Fedkiw R. Codimensional surface tension flow on simplicial complexes. ACM Trans. Graphics, 2014, 33(4): Article No. 111.

  108. 108.

    Da F, Batty C, Wojtan C, Grinspun E. Double bubbles sans toil and trouble: Discrete circulation-preserving vortex sheets for soap films and foams. ACM Trans. Graphics, 2015, 34(4): Article No. 149.

  109. 109.

    Ishida S, Yamamoto M, Ando R, Hachisuka T. A hyperbolic geometric flow for evolving films and foams. ACM Trans. Graphics, 2017, 36(6): Article No. 199.

  110. 110.

    Yang T, Lin M C, Martin R R, Chang J, Hu S M. Versatile interactions at interfaces for SPH-based simulations. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, July 2016, pp.57-66.

  111. 111.

    Wang X K, Ban X J, Zhang Y L, Liu S N, Ye P F. Surface tension model based on implicit incompressible smoothed particle hydrodynamics for fluid simulation. Journal of Computer Science and Technology, 2017, 32(6): 1186–1197.

  112. 112.

    Beneš B. Physically-based hydraulic erosion. In Proc. the 22nd Spring Conf. Computer Graphics, April 2006, pp.17-22.

  113. 113.

    Lenaerts T, Dutré P. Mixing fluids and granular materials. Computer Graphics Forum, 2009, 28(2): 213–218.

  114. 114.

    Baek S, Um K, Han J. Muddy water animation with different details. Computer Animation and Virtual Worlds, 2015, 26(3/4): 347–355.

  115. 115.

    Acar R, Boulanger P. Digital marbling: A multiscale fluid model. IEEE Trans. Visualization and Computer Graphics, 2006, 12(4): 600–614.

  116. 116.

    Feldman B E, O’Brien J F, Arikan O. Animating suspended particle explosions. ACM Trans. Graphics, 2003, 22(3): 708–715.

  117. 117.

    Nishino T, Iwasaki K, Dobashi Y, Nishita T. Visual simulation of freezing ice with air bubbles. In Proc. SIGGRAPH Asia 2012 Technical Briefs, December 2012, Article No. 1.

  118. 118.

    Harris M J. Real-time cloud simulation and rendering [Ph.D. Thesis]. The University of North Carolina at Chapel Hill, 2003.

  119. 119.

    Miyazaki R, Dobashi Y, Nishita T. Simulation of cumuliform clouds based on computational fluid dynamics. In Proc. Eurographics 2002 Short Presentation, January 2002, pp.405-410.

  120. 120.

    Dobashi Y, Kusumoto K, Nishita T, Yamamoto T. Feedback control of cumuliform cloud formation based on computational fluid dynamics. ACM Trans. Graphics, 2008, 27(3): Article No. 94.

  121. 121.

    Kawaguchi T, Dobashi Y, Yamamoto T. Controlling the simulation of cumuliform clouds based on fluid dynamics. IEICE Trans. Information and Systems, 2015, E98-D(11): 2034–2037.

  122. 122.

    Mizuno R, Dobashi Y, Chen B Y, Nishita T. Physics motivated modeling of volcanic clouds as a two fluids model. In Proc. the 11th Pacific Conf. Computer Graphics and Applications, October 2003.

  123. 123.

    Ren B, Yan X, Yang T, Li C F, Lin M C, Hu S M. Fast SPH simulation for gaseous fluids. The Visual Computer, 2016, 32(4): 523–534.

  124. 124.

    Müller M, Keiser R, Nealen A, Pauly M, Gross M, Alexa M. Point based animation of elastic, plastic and melting objects. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2004, pp.141-151.

  125. 125.

    Chang Y Z, Bao K, Liu Y Q, Zhu J, Wu E H. A particlebased method for viscoelastic fluids animation. In Proc. the 16th ACM Symp. Virtual Reality Software and Technology, November 2009, pp.111-117.

  126. 126.

    Fujisawa M, Miura K T. Animation of ice melting phenomenon based on thermodynamics with thermal radiation. In Proc. the 5th Int. Conf. Computer Graphics and Interactive Techniques in Australia and Southeast Asia, December 2007, pp.249-256.

  127. 127.

    Gao Y, Li S, Qin H, Hao A M. A novel fluid–solid coupling framework integrating FLIP and shape matching methods. In Proc. Computer Graphics Int. Conf., June 2017, Article No. 11.

  128. 128.

    Kim T, Lin M C. Visual simulation of ice crystal growth. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, July 2003, pp.86-97.

  129. 129.

    Kim T, Henson M, Lin M C. A hybrid algorithm for modeling ice formation. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2004, pp.305-314.

  130. 130.

    Kim T, Adalsteinsson D, Lin M C. Modeling ice dynamics as a thin-film Stefan problem. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, September 2006, pp.167-176.

  131. 131.

    Stam J, Fiume E. Depicting fire and other gaseous phenomena using diffusion processes. In Proc. the 22nd Annu. Conf. Computer Graphics and Interactive Techniques, June 1995, pp.129-136.

  132. 132.

    Yngve G D, O’Brien J F, Hodgins J K. Animating explosions. In Proc. the 27th Annu. Conf. Computer Graphics and Interactive Techniques, July 2000, pp.29-36.

  133. 133.

    Lamorlette A, Foster N. Structural modeling of flames for a production environment. ACM Trans. Graphics, 2002, 21(3): 729–735.

  134. 134.

    Wei X M, Li W, Mueller K, Kaufman A. Simulating fire with texture splats. In Proc. Conf. Visualization, October 2002, pp.227-235.

  135. 135.

    Kawada G, Kanai T. Procedural fluid modeling of explosion phenomena based on physical properties. In Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, August 2011, pp.167-176.

  136. 136.

    Kim T, Lee J, Kim C H. Physics-inspired controllable flame animation. The Visual Computer, 2016, 32(6/7/8): 871-880.

  137. 137.

    Kim T, Hong E, Im J, Yang D, Kim Y, Kim C H. Visual simulation of fire-flakes synchronized with flame. The Visual Computer, 2017, 33(6/7/8): 1029–1038.

  138. 138.

    Kwatra V, Adalsteinsson D, Kim T, Kwatra N, Carlson M, Lin M. Texturing fluids. IEEE Trans. Visualization and Computer Graphics, 2007, 13(5): 939–952.

  139. 139.

    Narain R, Kwatra V, Lee H P, Kim T, Carlson M, Lin M C. Feature-guided dynamic texture synthesis on continuous flows. In Proc. the 18th Eurographics Conf. Rendering Techniques, June 2007, pp.361-370.

  140. 140.

    Gregson J, Krimerman M, Hullin M B, Heidrich W. Stochastic tomography and its applications in 3D imaging of mixing fluids. ACM Trans. Graphics, 2012, 31(4): Article No. 52.

  141. 141.

    Gregson J, Ihrke I, Thuerey N, Heidrich W. From capture to simulation: Connecting forward and inverse problems in fluids. ACM Trans. Graphics, 2014, 33(4): Article No. 139.

  142. 142.

    Okabe M, Dobashi Y, Anjyo K, Onai R. Fluid volume modeling from sparse multi-view images by appearance transfer. ACM Trans. Graphics, 2015, 34(4): Article No. 93.

  143. 143.

    Wang H M, Liao M, Zhang Q, Yang R G, Turk G. Physically guided liquid surface modeling from videos. ACM Trans. Graphics, 2009, 28(3): Article No. 90.

Download references

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author information

Correspondence to Bo Ren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 298 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, B., Yang, X., Lin, M.C. et al. Visual Simulation of Multiple Fluids in Computer Graphics: A State-of-the-Art Report. J. Comput. Sci. Technol. 33, 431–451 (2018). https://doi.org/10.1007/s11390-018-1829-0

Download citation

Keywords

  • physical simulation
  • multiple fluids
  • computer graphics