Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Directional Edge Boxes: Exploiting Inner Normal Direction Cues for Effective Object Proposal Generation

  • 230 Accesses

  • 3 Citations

Abstract

Edges are important cues for localizing object proposals. The recent progresses to this problem are mostly driven by defining effective objectness measures based on edge cues. In this paper, we develop a new representation named directional edges on which each edge pixel is assigned with a direction toward object center, through learning a direction prediction model with convolutional neural networks in a holistic manner. Based on directional edges, two new objectness measures are designed for ranking object proposals. Experiments show that the proposed method achieves 97.1% object recall at an overlap threshold of 0.5 and 81.9% object recall at an overlap threshold of 0.7 at 1 000 proposals on the PASCAL VOC 2007 test dataset, which is superior to the state-of-the-art methods.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Lim J, Zitnick C, Doll´ar P. Sketch tokens: A learned midlevel representation for contour and object detection. In Proc. CVPR, June 2013, pp.3158-3165.

  2. 2.

    Doll´ar P, Zitnick C. Structured forests for fast edge detection. In Proc. ICCV, December 2013, pp.1841-1848.

  3. 3.

    Bertasius G, Shi J, Torresani L. DeepEdge: A multi-scale bifurcated deep network for top-down contour detection. In Proc. CVPR, June 2015, pp.4380-4389.

  4. 4.

    Shen W, Wang X, Wang Y, Bai X, Zhang Z. DeepContour: A deep convolutional feature learned by positivesharing loss for contour detection. In Proc. CVPR, June 2015, pp.3982-3991.

  5. 5.

    Xie S, Tu Z. Holistically-nested edge detection. In Proc. ICCV, December 2015, pp.1395-1403.

  6. 6.

    Zitnick C L, Doll´ar P. Edge Boxes: Locating object proposals from edges. In Proc. ECCV, September 2014, pp.391-405.

  7. 7.

    Cheng M M, Zhang Z, Lin W Y, Torr P. BING: Binarized normed gradients for objectness estimation at 300fps. In Proc. CVPR, June 2014, pp.3286-3293.

  8. 8.

    Lu C, Liu S, Jia J, Tang C K. Contour Box: Rejecting object proposals without explicit closed contours. In Proc. ICCV, December 2015, pp.2021-2029.

  9. 9.

    Qi Y, Song Y Z, Xiang T, Zhang H, Hospedales T, Li Y, Guo J. Making better use of edges via perceptual grouping. In Proc. CVPR, June 2015, pp.1856-1865.

  10. 10.

    Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In Proc. CVPR, June 2015, pp.3431-3440.

  11. 11.

    Xia G S, Delon J, Gousseau Y. Shape-based invariant texture indexing. International Journal of Computer Vision, 2010, 88(3): 382-403.

  12. 12.

    Xia G S, Delon J, Gousseau Y. Accurate junction detection and characterization in natural images. International Journal of Computer Vision, 2014, 106(1): 31-56.

  13. 13.

    Xie J, Dai G, Zhu F, Wong E, Fang Y. DeepShape: Deeplearned shape descriptor for 3D shape retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(7): 1335-1345.

  14. 14.

    Dai G, Xie J, Zhu F, Fang Y. Learning a discriminative deformation-invariant 3D shape descriptor via many-to-one encoder. Pattern Recognition Letters, 2016, 83: 330-338.

  15. 15.

    Everingham M, van Gool L, Williams C K, Winn J, Zisserman A. The Pascal visual object classes (VOC) challenge. IJCV, 2010, 88(2): 303-338.

  16. 16.

    Alexe B, Deselaers T, Ferrari V. What is an object? In Proc. CVPR, June 2010, pp.73-80.

  17. 17.

    van de Sande K E, Uijlings J R, Gevers T, Smeulders A W. Segmentation as selective search for object recognition. In Proc. ICCV, November 2011, pp.1879-1886.

  18. 18.

    Yanulevskaya V, Uijlings J, Sebe N. Learning to group objects. In Proc. CVPR, June 2014, pp.3134-3141.

  19. 19.

    Manen S, Guillaumin M, van Gool L. Prime object proposals with Randomized Prim’s algorithm. In Proc. ICCV, December 2013, pp.2536-2543.

  20. 20.

    Xiao Y, Lu C, Tsougenis E, Lu Y, Tang C K. Complexityadaptive distance metric for object proposals generation. In Proc. CVPR, June 2015, pp.778-786.

  21. 21.

    Rantalankila P, Kannala J, Rahtu E. Generating object segmentation proposals using global and local search. In Proc. CVPR, June 2014, pp.2417-2424.

  22. 22.

    Arbeláez P, Pont-Tuset J, Barron J, Marques F, Malik J. Multiscale combinatorial grouping. In Proc. CVPR, June 2014, pp.328-335.

  23. 23.

    Endres I, Hoiem D. Category-independent object proposals with diverse ranking. IEEE Trans. PAMI, 2014, 36(2): 222-234.

  24. 24.

    Humayun A, Li F, Rehg J. RIGOR: Reusing inference in graph cuts for generating object regions. In Proc. CVPR, June 2014, pp.336-343.

  25. 25.

    Humayun A, Li F, Rehg J M. The middle child problem: Revisiting parametric mincut and seeds for object proposals. In Proc. ICCV, December 2015, pp.1600-1608.

  26. 26.

    Krähenbühl P, Koltun V. Geodesic object proposals. In Proc. ECCV, Sept. 2014, pp.725-739.

  27. 27.

    Lee T, Fidler S, Dickinson S. Learning to combine midlevel cues for object proposal generation. In Proc. ICCV, December 2015, pp.1680-1688.

  28. 28.

    Wang C, Zhao L, Liang S, Zhang L, Jia J, Wei Y. Object proposal by multibranch hierarchical segmentation. In Proc. CVPR, June 2015, pp.3873-3881.

  29. 29.

    Pinheiro P O, Collobert R, Doll´ar P. Learning to segment object candidates. In Proc. Advances in Neural Information Processing Systems, Dec. 2015, pp.1990-1998.

  30. 30.

    Martin D R, Fowlkes C C, Malik J. Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5): 530-549.

  31. 31.

    Arbelaez P, Maire M, Fowlkes C, Malik J. Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898-916.

  32. 32.

    Ren X, Bo L. Discriminatively trained sparse code gradients for contour detection. In Proc. Advances in Neural Information Processing Systems, December 2012, pp.593-601.

  33. 33.

    Hwang J J, Liu T L. Pixel-wise deep learning for contour detection. arXiv:1504.01989, 2015. https://arxiv.org/abs-/1504.01989, May 2017.

  34. 34.

    Rahtu E, Kannala J, Blaschko M. Learning a category independent object detection cascade. In Proc. ICCV, November 2011, pp.1052-1059.

  35. 35.

    Kuo W, Hariharan B, Malik J. DeepBox: Learning objectness with convolutional networks. In Proc. ICCV, December 2015, pp.2479-2487.

  36. 36.

    Ghodrati A, Diba A, Pedersoli M, Tuytelaars T, van Gool L. DeepProposal: Hunting objects by cascading deep convolutional layers. In Proc. CVPR, June 2015, pp.2578-2586.

  37. 37.

    Chen X, Ma H, Wang X, Zhao Z. Improving object proposals with multithresholding straddling expansion. In Proc. CVPR, June 2015, pp.2587-2595.

  38. 38.

    Zhang Z, Liu Y, Bolukbasi T, Cheng M M, Saligrama V. BING++: A fast high quality object proposal generator at 100fps. arXiv:1511.04511, 2015. https://arxiv.org/abs/-1511.04511, Apr. 2017.

  39. 39.

    Xiao Y,Wu J, Yuan J. mCENTRIST: A multichannel feature generation mechanism for scene categorization. IEEE Trans. Image Processing, 2014, 23(2): 823-836.

  40. 40.

    Fang Z, Cao Z, Xiao Y, Zhu L, Yuan J. Adobe Boxes: Locating object proposals using object adobes. IEEE Trans. Image Processing, 2016, 25(9): 4116-4128.

  41. 41.

    He S, Lau R W. Oriented object proposals. In Proc. the IEEE International Conference on Computer Vision, Dec. 2015, pp.280-288.

  42. 42.

    Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, 2014. https://arxiv.org/abs/1409.1556, May 2017.

  43. 43.

    Lin T Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick C L. Microsoft COCO: Common objects in context. In Proc. the 13th European Conference on Computer Vision, September 2014, pp.740-755.

  44. 44.

    Alexe B, Deselaers T, Ferrari V. Measuring the objectness of image windows. IEEE Trans. PAMI, 2012, 34(11): 2189-2202.

  45. 45.

    Zhang Z, Warrell J, Torr P H. Proposal generation for object detection using cascaded ranking SVMs. In Proc. CVPR, June 2011, pp.1497-1504.

  46. 46.

    Krähenbühl P, Koltun V. Learning to propose objects. In Proc. CVPR, June 2015, pp.1574-1582.

  47. 47.

    Ballard D H. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition, 1981, 13(2): 111-122.

  48. 48.

    Borgefors G. Hierarchical chamfer matching: A parametric edge matching algorithm. IEEE Trans. PAMI, 1988, 10(6): 849-865.

Download references

Author information

Correspondence to Wei Shen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bai, X., Zhang, Z., Wang, H. et al. Directional Edge Boxes: Exploiting Inner Normal Direction Cues for Effective Object Proposal Generation. J. Comput. Sci. Technol. 32, 701–713 (2017). https://doi.org/10.1007/s11390-017-1752-9

Download citation

Keywords

  • object proposal
  • directional edge
  • convolutional neural network