Journal of Computer Science and Technology

, Volume 30, Issue 3, pp 439–452 | Cite as

A Survey of Blue-Noise Sampling and Its Applications

  • Dong-Ming Yan
  • Jian-Wei Guo
  • Bin Wang
  • Xiao-Peng Zhang
  • Peter Wonka


In this paper, we survey recent approaches to blue-noise sampling and discuss their beneficial applications. We discuss the sampling algorithms that use points as sampling primitives and classify the sampling algorithms based on various aspects, e.g., the sampling domain and the type of algorithm. We demonstrate several well-known applications that can be improved by recent blue-noise sampling techniques, as well as some new applications such as dynamic sampling and blue-noise remeshing.


blue-noise sampling Poisson-disk sampling Lloyd relaxation rendering remeshing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Mitchell D P. Generating antialiased images at low sampling densities. In Proc. the 14th ACM SIGGRAPH, July 1987, pp.65–72.Google Scholar
  2. [2]
    Fattal R. Blue-noise point sampling using kernel density model. ACM Trans. Graphics, 2011, 30(4): 48:1–48:12Google Scholar
  3. [3]
    Wu F, Dong W, Kong Y et al. Featureaware natural texture synthesis. The Visual Computer. (to be appeared)Google Scholar
  4. [4]
    Deussen O, Hanrahan P, Lintermann B et al. Realistic modeling and rendering of plant ecosystems. In Proc. the 25th ACM SIGGRAPH, July 1998, pp.275-286.Google Scholar
  5. [5]
    Schechter H, Bridson R. Ghost SPH for animating water. ACM Trans. Graphics, 2012, 31(4): 61:1–61:8.Google Scholar
  6. [6]
    Lagae A, Dutré P. A comparison of methods for generating Poisson disk distributions. Computer Graphics Forum, 2008, 27(1): 114–129.Google Scholar
  7. [7]
    Tzeng S,Wei L Y. Parallel white noise generation on a GPU via cryptographic hash. In Proc. the 2008 Symp. Interactive 3D Graphics and Games, February 2008, pp.79-87.Google Scholar
  8. [8]
    Condit R, Ashton P S, Baker P et al. Spatial patterns in the distribution of tropical tree species. Science, 2000, 288(5470): 1414–1418.CrossRefGoogle Scholar
  9. [9]
    Ostling A, Harte J, Green J. Self-similarity and clustering in the spatial distribution of species. Science, 2000, 290(5492): 671–671.CrossRefGoogle Scholar
  10. [10]
    Lau D L, Ulichney R, Arce G R. Blue and green noise halftoning models. IEEE Signal Processing Magazine, 2003, 20(4): 28–38CrossRefGoogle Scholar
  11. [11]
    Schlömer T, Heck D, Deussen O. Farthest-point optimized point sets with maximized minimum distance. In Proc. ACM SIGGRAPH Symposium on High Performance Graphics, August 2011, pp.135-142.Google Scholar
  12. [12]
    Ebeida M S, Patney A, Mitchell S A et al. Efficient maximal Poisson-disk sampling. ACM Trans. Graphics, 2011, 30(4): 49:1–49:12.Google Scholar
  13. [13]
    Ebeida M S, Mitchell S A, Patney A et al. A simple algorithm for maximal Poisson-disk sampling in high dimensions. Computer Graphics Forum, 2012 31(2): 785–794CrossRefGoogle Scholar
  14. [14]
    Bridson R. Fast Poisson disk sampling in arbitrary dimensions. In Proc. ACM SIGGRAPH 2007 Sketches, August 2007, Article No. 22.Google Scholar
  15. [15]
    Wei L Y. Parallel Poisson disk sampling. ACM Trans. Graphics, 2008, 27(3): 20:1–20:9.Google Scholar
  16. [16]
    Gamito M N, Maddock S C. Accurate multidimensional Poisson-disk sampling. ACM Trans. Graphics, 2009, 29(1): 8:1–8:19.Google Scholar
  17. [17]
    Ebeida M S, Mitchell S A, Patney A et al. Exercises in high-dimensional sampling: Maximal Poisson-disk sampling and k-d Darts. In Topological and Statistical Methods for Complex Data, Bennett J, Vivodtzev F, Pascucci V(eds.), Springer-Verlag, 2015, pp.221-238.Google Scholar
  18. [18]
    Cook R L. Stochastic sampling in computer graphics. ACM Trans. Graphics, 1986, 5(1): 51–72.CrossRefGoogle Scholar
  19. [19]
    Dunbar D, Humphreys G. A spatial data structure for fast Poisson-disk sample generation. ACM Trans. Graphics, 2006, 25(3): 503–508.CrossRefGoogle Scholar
  20. [20]
    White K B, Cline D, Egbert P K. Poisson disk point sets by hierarchical dart throwing. In Proc. IEEE Symposium on Interactive Ray Tracing, Sept. 2007, pp.129-132.Google Scholar
  21. [21]
    Jones T R, Karger D R. Linear-time Poisson-disk patterns. Journal of Graphics, GPU, and Game Tools, 2011, 15(3): 177–182.CrossRefGoogle Scholar
  22. [22]
    Wei L Y. Multi-class blue noise sampling. ACM Trans. Graphics, 2010, 29(4): 79:1–79:8Google Scholar
  23. [23]
    Ip C Y, Yal¸cin M A, Luebke D, Varshney A. Pixelpie: Maximal Poisson-disk sampling with rasterization. In Proc. the 5th High-Performance Graphics Conference, July 2013, pp.17-26.Google Scholar
  24. [24]
    Jones T R. Efficient generation of Poisson-disk sampling patterns. Journal of Graphics Tools, 2006, 11(2): 27–36.CrossRefGoogle Scholar
  25. [25]
    Yan D M, Wonka P. Gap processing for adaptive maximal Poisson-disk sampling. ACM Trans. Graphics, 2013, 32(5): 148:1–148:15.Google Scholar
  26. [26]
    Mitchell S A, Rand A, Ebeida M S, Bajaj C L. Variable radii Poisson disk sampling. In Proc. the 24th Canadian Conference on Computational Geometry (CCCG), August 2012, pp.185-190.Google Scholar
  27. [27]
    Ebeida M S, Mahmoud A H, Awad M A et al. Sifted disks. Computer Graphics Forum, 2013, 32(2): 509–518.CrossRefGoogle Scholar
  28. [28]
    Yuksel C. Sample elimination for generating Poisson disk sample sets. Computer Graphics Forum, 2015, 37(2). (to be appeared)Google Scholar
  29. [29]
    Cline D, Jeschke S, White K, Razdan A, Wonka P. Dart throwing on surfaces. Computer Graphics Forum, 2009, 28(4): 1217–1226CrossRefGoogle Scholar
  30. [30]
    Bowers J,Wang R,Wei L Y, Maletz D. Parallel Poisson disk sampling with spectrum analysis on surfaces. ACM Trans. Graphics, 2010, 29(6): 166:1–166:10Google Scholar
  31. [31]
    Corsini M, Cignoni P, Scopigno R. Efficient and flexible sampling with blue noise properties of triangular meshes. IEEE Trans. Vis. and Comp. Graphics, 2012, 18(6): 914–924.CrossRefGoogle Scholar
  32. [32]
    Geng B, Zhang H, Wang H, Wang G. Approximate Poisson disk sampling on mesh. Science China Information Sciences, 2013, 56(9): 1–12.CrossRefGoogle Scholar
  33. [33]
    Yan D M, Wonka P. Adaptive maximal Poisson-disk sampling on surfaces. In Proc. ACM SIGGRAPH Asia Technical Briefs, Nov. 28–Dec. 1, 2012, pp.21:1–21:4Google Scholar
  34. [34]
    Yan D M, Bao G B, Zhang X, Wonka P. Low-resolution remeshing using the localized restricted Voronoi diagram. IEEE Trans. Vis. and Comp. Graphics, 2014, 20(10): 1418–1427.CrossRefGoogle Scholar
  35. [35]
    Medeiros E, Ingrid L, Pesco S, Silva C. Fast adaptive blue noise on polygonal surfaces. Graphical Models, 2014, 76(1): 17–29.CrossRefGoogle Scholar
  36. [36]
    Guo J, Yan D M, Jia X, Zhang X. Efficient maximal Poisson-disk sampling and remeshing on surfaces. Computers & Graphics, 2015, 46: 72–79.CrossRefGoogle Scholar
  37. [37]
    Yan D M, Wallner J, Wonka P. Unbiased sampling and meshing of isosurfaces. IEEE Trans. Vis. and Comp. Graphics, 2014, 20(11): 1579–1589.CrossRefGoogle Scholar
  38. [38]
    Fu Y, Zhou B. Direct sampling on surfaces for high quality remeshing. In Proc. ACM Symposium on Solid and Physical Modeling, June 2008, pp.115-124.Google Scholar
  39. [39]
    Ying X, Xin S Q, Sun Q, He Y. An intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces. IEEE Trans. Vis. and Comp. Graphics, 2013, 19(9): 1425–1437.CrossRefGoogle Scholar
  40. [40]
    Ying X, Li Z, He Y. A parallel algorithm for improving the maximal property of Poisson disk sampling. Computer-Aided Design, 2014, 46: 37–44.CrossRefGoogle Scholar
  41. [41]
    Peyrot J L, Payan F, Antonini M. Direct blue noise resampling of meshes of arbitrary topology. The Visual Computer, 2014. (to be appeared)Google Scholar
  42. [42]
    Yan D M, Lévy B, Liu Y et al. Isotropic remeshing with fast and exact computation of restricted Voronoi diagram. Computer Graphics Forum, 2009, 28(5): 1445–1454.Google Scholar
  43. [43]
    Lloyd S P. Least squares quantization in PCM. IEEE Transactions on Information Theory, 1982, 28(2): 129–137.CrossRefzbMATHMathSciNetGoogle Scholar
  44. [44]
    Du Q, Faber V, Gunzburger M. Centroidal Voronoi tessellations: Applications and algorithms. SIAM Review, 1999, 41(4): 637–676.CrossRefzbMATHMathSciNetGoogle Scholar
  45. [45]
    Alliez P, de Verdi`ere E C, Devillers O, Isenburg M. Centroidal Voronoi diagrams for isotropic surface remeshing. Graphical Models, 2005, 67(3): 204–231.CrossRefzbMATHGoogle Scholar
  46. [46]
    Rong G, Jin M, Shuai L, Guo X. Centroidal Voronoi tessellation in universal covering space of manifold surfaces. Comp. Aided Geom. Design, 2011, 28(8): 475–496.CrossRefzbMATHMathSciNetGoogle Scholar
  47. [47]
    Valette S, Chassery J M, Prost R. Generic remeshing of 3D triangular meshes with metric-dependent discrete Voronoi diagrams. IEEE Trans. Vis. and Comp. Graphics, 2008, 14(2): 369–381.CrossRefGoogle Scholar
  48. [48]
    Balzer M Schlömer T, Deussen O. Capacity-constrained point distributions: A variant of Lloyd’s method. ACM Trans. Graphics, 2009, 28(6): 86:1–86:8.Google Scholar
  49. [49]
    Li D, Nehab D, Wei L Y, Sander P V, Fu C W. Fast capacity constrained Voronoi tessellation. In Proc. the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, Feb. 2010, Article No. 13.Google Scholar
  50. [50]
    Xu Y, Liu L, Gotsman C, Gortler S J. Capacity-constrained Delaunay triangulation for point distributions. Computers & Graphics, 2011, 35(3): 510–516.CrossRefGoogle Scholar
  51. [51]
    Xu Y, Hu R, Gotsman C, Liu L. Blue noise sampling of surfaces. Computers & Graphics, 2012, 36(4): 232–240.CrossRefGoogle Scholar
  52. [52]
    Chen Z, Yuan Z, Choi Y K, Liu L, Wang W. Variational blue noise sampling. IEEE Trans. Vis. and Comp. Graphics, 2012, 18(10): 1784–1796.CrossRefGoogle Scholar
  53. [53]
    Liu Y, Wang W, Lévy B et al. On centroidal Voronoi tessellation — Energy smoothness and fast computation. ACM Trans. Graphics, 2009, 28(4): 101:1–101:17.Google Scholar
  54. [54]
    de Goes F, Breeden K, Ostromoukhov V, Desbrun M. Blue noise through optimal transport. ACM Trans. Graphic, 2012, 31(6): 171:1–171:11Google Scholar
  55. [55]
    Kanamori Y, Szego Z, Nishita T. Deterministic blue noise sampling by solving largest empty circle problems. The Journal of the Institute of Image Electronics Engineers of Japan, 2011, 40(1): 6–13.Google Scholar
  56. [56]
    Chen R, Gotsman C. Parallel bluenoise sampling by constrained farthest point optimization. Computer Graphics Forum, 2012, 31(5): 1775–1785.CrossRefGoogle Scholar
  57. [57]
    Yan D M, Guo J, Jia X, Zhang X, Wonka P. Bluenoise remeshing with farthest point optimization. Computer Graphics Forum, 2014, 33(5): 167–176.CrossRefGoogle Scholar
  58. [58]
    Öztireli A C, Alexa M, Gross M. Spectral sampling of manifolds. ACM Trans. Graphics, 2010, 29(6): 168:1–168:8.Google Scholar
  59. [59]
    Chen J, Ge X, Wei L W et al. Bilateral blue noise sampling. ACM Trans. Graphics, 2013, 32(6): 216:1–216:11.Google Scholar
  60. [60]
    Ebeida M S, Awad M A, Ge X et al. Improving spatial coverage while preserving the blue noise of point sets. Computer-Aided Design, 2014, 46: 25–36.CrossRefGoogle Scholar
  61. [61]
    Hiller S, Deussen O, Keller A. Tiled blue noise samples. In Proc. the 16th Vision Modeling and Visualization Conference, October 2001, pp.265–272.Google Scholar
  62. [62]
    Wang H. Proving theorems by pattern recognition, II. Bell Systems Technical Journal, 1961, 40(1): 1–42.CrossRefGoogle Scholar
  63. [63]
    Wang H. Games, logic and computers. Scientific American, 1965, 213(5): 98–106.CrossRefGoogle Scholar
  64. [64]
    Lagae A, Dutré P. A procedural object distribution function. ACM Trans. Graphics, 2005, 24(4): 1442–1461.CrossRefGoogle Scholar
  65. [65]
    Kopf J, Cohen-Or D, Deussen O, Lischinski D. Recursive Wang tiles for real-time blue noise. ACM Trans. Graphics, 2006, 25(3): 509–518.CrossRefGoogle Scholar
  66. [66]
    Ostromoukhov V, Donohue C, Jodoin P M. Fast hierarchical importance sampling with blue noise properties. ACM Trans. Graphics, 2004, 23(3): 488–495.CrossRefGoogle Scholar
  67. [67]
    Ostromoukhov V. Sampling with polyominoes. ACM Trans. Graphics, 2007, 26(3): 78:1–78:6.Google Scholar
  68. [68]
    Wachtel F, Pilleboue A, Coeurjolly D et al. Fast tile-based adaptive sampling with user-specified fourier spectra. ACM Trans. Graphics, 2014, 33(4): 56:1–56:11.Google Scholar
  69. [69]
    Kalantari N K, Sen P. Fast generation of approximate blue noise point sets. Computer Graphics Forum, 2012, 31(4): 1529–1535.CrossRefGoogle Scholar
  70. [70]
    Kalantari N K, Sen P. Efficient computation of blue noise point sets through importance sampling. Computer Graphics Forum, 2011, 30(4): 1215–1221.CrossRefGoogle Scholar
  71. [71]
    Zhou Y, Huang H, Wei L Y, Wang R. Point sampling with general noise spectrum. ACM Trans. Graph., 2012, 31(4): 76:1–76:11.Google Scholar
  72. [72]
    Heck D, Schlömer T, Deussen O. Blue noise sampling with controlled aliasing. ACM Trans. Graphics, 2013, 32(3): 25:1–25:12.Google Scholar
  73. [73]
    Mitchell S A, Mohammed M A, Mahmoud A H, Ebeida M S. Delaunay quadrangulations by two-coloring vertices. In Proc. the 23rd International Meshing Roundtable, October 2014, pp.364-376.Google Scholar
  74. [74]
    Tzeng S, Patney A, Davidson A et al. High-quality parallel depth-of-field using line samples. In Proc. the 4th ACM SIGGRAPH/Eurographics Conference on High-Performance Graphics, June 2012, pp.23-31.Google Scholar
  75. [75]
    Sun X, Zhou K, Guo J et al. Line segment sampling with blue-noise properties. ACM Trans. Graphics, 2013, 32(4): 127:1–127:14.Google Scholar
  76. [76]
    Ebeida M S, Patney A, Mitchell S A et al. k-d Darts: Sampling by k-dimensional flat searches. ACM Trans. Graphics, 2014, 33(1): 3:1–3:16.Google Scholar
  77. [77]
    Feng L, Hotz I, Hamann B, Joy K I. Anisotropic noise samples. IEEE Trans. Vis. and Comp. Graphics, 2008, 14(2): 342–354.CrossRefGoogle Scholar
  78. [78]
    Li H, Wei L Y, Sander P, Fu C W. Anisotropic blue noise sampling. ACM Trans. Graphics, 2010, 29(6): 167:1–167:12.Google Scholar
  79. [79]
    Quinn J A, Langbein F C, Lai Y K, Martin R R. Generalized anisotropic stratified surface sampling. IEEE Trans. Vis. and Comp. Graphics, 2013, 19(7): 1143–1157.CrossRefGoogle Scholar
  80. [80]
    Ulichney R. Digital Halftoning. Cambridge, USA: MIT Press, 1987.Google Scholar
  81. [81]
    Schlömer T, Deussen O. Accurate spectral analysis of twodimensional point sets. Journal of Graphics, GPU, and Game Tools, 2011, 15(3): 152–160.CrossRefGoogle Scholar
  82. [82]
    Öztireli A C, Gross M. Analysis and synthesis of point distributions based on pair correlation. ACM Trans. Graphics, 2012, 31(6): 170:1–170:10.Google Scholar
  83. [83]
    Subr K, Kautz J. Fourier analysis of stochastic sampling strategies for assessing bias and variance in integration. ACM Trans. Graphics, 2013, 32(4): 128:1–128:12.Google Scholar
  84. [84]
    Wei L Y, Wang R. Differential domain analysis for nonuniform sampling. ACM Trans. Graphics, 2011, 30(4): Article No. 50.Google Scholar
  85. [85]
    Frey P, Borouchaki H. Surface mesh evaluation. In Proc. the 6th Int. Meshing Roundtable, October 1997, pp.363-374.Google Scholar
  86. [86]
    Cignoni P, Rocchini C, Scopigno R. Metro: Measuring error on simplified surfaces. Computer Graphics Forum, 1998, 17(2): 167–174.CrossRefGoogle Scholar
  87. [87]
    Spencer B, Jones M W. Progressive photon relaxation. ACM Trans. Graphics, 2013, 32(1): 7:1–7:11.Google Scholar
  88. [88]
    Secord A. Weighted Voronoi stippling. In Proc. the 2nd International Symposium on Non-Photorealistic Animation and Rendering, June 2002, pp.37-43.Google Scholar
  89. [89]
    Ascencio-Lopez I, Meruvia-Pastor O, Hidalgo-Silva H. Adaptive incremental stippling using the Poisson-disk distribution. Journal of Graphics, GPU, and Game Tools, 2010, 15(1): 29–47.CrossRefGoogle Scholar
  90. [90]
    Ge X, Wei L Y, Wang Y, Wang H. Bilateral blue noise sampling: Additional algorithms and applications. Technical Report, OSU-CISRC-8/13-TR17, The Ohio State University, 2013.Google Scholar
  91. [91]
    Ebeida M S, Mitchell S A, Davidson A A et al. Efficient and good Delaunay meshes from random points. Computer-Aided Design, 2011, 43(11): 1506–1515.CrossRefGoogle Scholar
  92. [92]
    Guo J, Yan D M, Bao G, Dong W, Zhang X, Wonka P. Efficient triangulation of Poisson-disk sampled point sets. The Visual Computer, 2014, 30(6/7/8): 773–785.Google Scholar
  93. [93]
    Chew L P. Guaranteed-quality triangular meshes. Technical Report, 89–983, Department of Computer Science, Cornell University, April 1989.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Dong-Ming Yan
    • 1
    • 2
  • Jian-Wei Guo
    • 2
  • Bin Wang
    • 3
  • Xiao-Peng Zhang
    • 2
  • Peter Wonka
    • 1
    • 4
  1. 1.Visual Computing CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
  2. 2.National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijingChina
  3. 3.School of SoftwareTsinghua UniversityBeijingChina
  4. 4.Department of Computer Science and EngineeringArizona State UniversityTempeU.S.A.

Personalised recommendations