Advertisement

Journal of Computer Science and Technology

, Volume 28, Issue 5, pp 852–867 | Cite as

A Survey of Visual Analytics Techniques and Applications: State-of-the-Art Research and Future Challenges

  • Guo-Dao Sun
  • Ying-Cai Wu
  • Rong-Hua Liang
  • Shi-Xia Liu
Survey

Abstract

Visual analytics employs interactive visualizations to integrate users’ knowledge and inference capability into numerical/algorithmic data analysis processes. It is an active research field that has applications in many sectors, such as security, finance, and business. The growing popularity of visual analytics in recent years creates the need for a broad survey that reviews and assesses the recent developments in the field. This report reviews and classifies recent work into a set of application categories including space and time, multivariate, text, graph and network, and other applications. More importantly, this report presents analytics space, inspired by design space, which relates each application category to the key steps in visual analytics, including visual mapping, model-based analysis, and user interactions. We explore and discuss the analytics space to add the current understanding and better understand research trends in the field.

Keywords

Visual analytics Information visualization Data analysis User interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11390_2013_1383_MOESM1_ESM.docx (14 kb)
ESM 1 (DOCX 13 kb)

References

  1. 1.
    Keim D A, Mansmann F, Schneidewind J, Ziegler H. Challenges in visual data analysis. In Proc. the IEEE Conference on Information Visualization, Oct. 2006, pp.9-16.Google Scholar
  2. 2.
    Keim D A, Kohlhammer J, Ellis G, Mansmann F. Mastering the Information Age: Solving Problems with Visual Analytics. Florian Mansmann, 2010.Google Scholar
  3. 3.
    Thomas J J, Cook K A. Illuminating the Path: The Research and Development Agenda for Visual Analytics. National Visualization and Analytics Ctr, 2005.Google Scholar
  4. 4.
    Landge A G, Levine J A, Bhatele A, Isaacs K E, Gamblin T, Schulz M, Langer S H, Bremer P, Pascucci V. Visualizing network traffic to understand the performance of massively parallel simulations. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2467-2476.CrossRefGoogle Scholar
  5. 5.
    Block F, Horn M S, Phillips B C, Diamond J, Evans E M, Shen C. The DeepTree exhibit: Visualizing the tree of life to facilitate informal learning. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2789-2798.CrossRefGoogle Scholar
  6. 6.
    Ma J, Liao I, Ma K L, Frazier J. Living Liquid: Design and evaluation of an exploratory visualization tool for museum visitors. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2799-2808.CrossRefGoogle Scholar
  7. 7.
    Pileggi H, Stolper C D, Boyle J M, Stasko J T. Snapshot: Visualization to propel ice hockey analytics. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2819-2828.CrossRefGoogle Scholar
  8. 8.
    Wang X, Zhou X, Wang S. Summarizing large-scale database schema using community detection. Journal of Computer Science and Technology, 2012, 27(3): 515-526.CrossRefGoogle Scholar
  9. 9.
    Albers D, Dewey C, Gleicher M. Sequence Surveyor: Leveraging overview for scalable genomic alignment visualization. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2392-2401.CrossRefGoogle Scholar
  10. 10.
    Pretorius A J, Bray M A, Carpenter A E, Ruddle R A. Visualization of parameter space for image analysis. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2402-2411CrossRefGoogle Scholar
  11. 11.
    Das K, Majumder A, Siegenthaler M, Keirstead H, Gopi M. Automated cell classification and visualization for analyzing remyelination therapy. The Visual Computer, 2011, 27(12): 1055-1069.CrossRefGoogle Scholar
  12. 12.
    Aigner W, Miksch S, Schumann H, Tominski C. Visualization of Time-Oriented Data. Springer, 2011.Google Scholar
  13. 13.
    Andrienko G, Andrienko N, Demsar U, Dransch D, Dykes J, Fabrikant S I, Jern M, Kraak M J, Schumann H, Tominski C. Space, time and visual analytics. International Journal of Geographical Information Science, 2010, 24(10): 1577-1600.CrossRefGoogle Scholar
  14. 14.
    von Landesberger T, Kuijper A, Schreck T, Kohlhammer J, van Wijk J J, Fekete J D, Fellner D W. Visual analysis of large graphs: State-of-the-art and future research challenges. Computer Graphics Forum, 2011, 30(6): 1719-1749.CrossRefGoogle Scholar
  15. 15.
    Shneiderman B. The eyes have it: A task by data type taxonomy for information visualizations. In Proc. the IEEE Symposium on Visual Languages, Sept. 1996, pp.336-343.Google Scholar
  16. 16.
    Card S K, Mackinlay J D, Schneiderman B. Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann, 1999.Google Scholar
  17. 17.
    Bertini E, Tatu A, Keim D A. Quality metrics in high-dimensional data visualization: An overview and systematization. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2203-2212.CrossRefGoogle Scholar
  18. 18.
    Crouser R J, Chang R. An affordance-based framework for human computation and human-computer collaboration. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2859-2868.CrossRefGoogle Scholar
  19. 19.
    Simoff S J, B¨ohlen M H, Mazeika A (eds.). Visual Data Mining. Springer, 2008.Google Scholar
  20. 20.
    Dasgupta A, Kosara R. Adaptive privacy-preserving visualization using parallel coordinates. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2241-2248.CrossRefGoogle Scholar
  21. 21.
    Hullman J, Adar E, Shah P. Benefitting InfoVis with visual difficulties. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2213-2222.CrossRefGoogle Scholar
  22. 22.
    Kandel S, Paepcke A, Hellerstein J M, Heer J. Enterprise data analysis and visualization: An interview study. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2917-2926.CrossRefGoogle Scholar
  23. 23.
    Wickham H, Hofmann H. Product plots. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2223-2230.CrossRefGoogle Scholar
  24. 24.
    Wu Y, Liu X, Liu S, Ma K L. ViSizer: A visualization re-sizing framework. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(2): 278-290.CrossRefGoogle Scholar
  25. 25.
    Wu Y, Wei F, Liu S et al. Opinionseer: Interactive visualization of hotel customer feedback. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(6): 1109-1118.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Wu Y, Yuan G, Ma K L. Visualizing flow of uncertainty through analytical processes. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2526-2535.CrossRefGoogle Scholar
  27. 27.
    Munzner T. A nested model for visualization design and validation. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(6): 921-928.CrossRefGoogle Scholar
  28. 28.
    Sedlmair M, Meyer M, Munzner T. Design study methodology: Reflections from the trenches and the stacks. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2431-2440.CrossRefGoogle Scholar
  29. 29.
    Lam H, Bertini E, Isenberg P, Plaisant C, Carpendale S. Empirical studies in information visualization: Seven scenarios. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(9): 1520-1536.CrossRefGoogle Scholar
  30. 30.
    Endert A, Fiaux P, North C. Semantic interaction for sense-making: Inferring analytical reasoning for model steering. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2879-2888.CrossRefGoogle Scholar
  31. 31.
    Bostock M, Ogievetsky V, Heer J. D3 data-driven documents. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2301-2309.CrossRefGoogle Scholar
  32. 32.
    Fisher D, Drucker S M, Fernandez R, Ruble S. Visualizations everywhere: A multiplatform infrastructure for linked visualizations. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(6): 1157-1163.CrossRefGoogle Scholar
  33. 33.
    Adrienko N, Adrienko G. Spatial generalization and aggregation of massive movement data. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(2): 205-219.CrossRefGoogle Scholar
  34. 34.
    Afzal S, Maciejewski R, Jang Y, Elmqvist N, Ebert D S. Spatial text visualization using automatic typographic maps. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2556-2564.CrossRefGoogle Scholar
  35. 35.
    Andrienko G, Andrienko N, Hurter C, Rinzivillo S, Wrobel S. Scalable analysis of movement data for extracting and exploring significant places. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(7): 1078-1094.CrossRefGoogle Scholar
  36. 36.
    Andrienko N, Andrienko G. Exploratory Analysis of Spatial and Temporal Data. Springer Berlin, 2006.Google Scholar
  37. 37.
    Bak P, Mansmann F, Janetzko H, Keim D A. Spatiotemporal analysis of sensor logs using growth ring maps. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(6): 913-920.CrossRefGoogle Scholar
  38. 38.
    Buchin K, Speckmann B, Verbeek K. Flow map layout via spiral trees. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2536-2544.CrossRefGoogle Scholar
  39. 39.
    Dang T N, Anand A, Wilkinson L. TimeSeer: Scagnostics for high-dimensional time series. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(3): 470-483.CrossRefGoogle Scholar
  40. 40.
    Ferreira N, Lins L, Fink D, Kelling S, Wood C, Freire J, Silva C. BirdVis: Visualizing and understanding bird populations. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2374-2383.CrossRefGoogle Scholar
  41. 41.
    Haunert J H, Sering L. Algorithms for labeling focus regions. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2583-2592.CrossRefGoogle Scholar
  42. 42.
    Haunert J H, Sering L. Drawing road networks with focus regions. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2555–2562.CrossRefGoogle Scholar
  43. 43.
    Kim S, Maciejewski R, Malik A, Jang Y, Ebert D S, Isenberg T. Bristle Maps: A multivariate abstraction technique for geovisualization. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(9): 1438-1454.CrossRefGoogle Scholar
  44. 44.
    Krśtajic M, Bertini E, Keim D A. CloudLines: Compact display of event episodes in multiple time-series. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2432-2439.CrossRefGoogle Scholar
  45. 45.
    Maciejewski R, Hafen R, Rudolph S et al. Forecasting hotspots — A predictive analytics approach. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(4): 440-453.CrossRefGoogle Scholar
  46. 46.
    Maciejewski R, Rudolph S, Hafen R et al. A visual analytics approach to understanding spatiotemporal hotspots. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(2): 205-220.CrossRefGoogle Scholar
  47. 47.
    Scheepens R, Willems N, van de Wetering H et al. Composite density maps for multivariate trajectories. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2518-2527.CrossRefGoogle Scholar
  48. 48.
    Scheepens R, Willems N, van de Wetering H, van Wijk J J. Interactive visualization of multivariate trajectory data with density maps. In Proc. the IEEE Symposium on Pacific Visualization, Mar. 2011, pp.147-154.Google Scholar
  49. 49.
    Shi C, Cui W, Liu S, Xu P, Chen W, Qu H. RankExplorer: Visualization of ranking changes in large time series data. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2669-2678.CrossRefGoogle Scholar
  50. 50.
    Sips M, Kothur P, Unger A, Hege H C, Dransch D. A visual analytics approach to multiscale exploration of environmental time series. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2899-2907.CrossRefGoogle Scholar
  51. 51.
    Slingsby A, Dykes J, Wood J. Exploring uncertainty in geode-mographics with interactive graphics. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2545-2554.CrossRefGoogle Scholar
  52. 52.
    Tominski C, Schumann H, Andrienko G, Andrienko N. Stacking-based visualization of trajectory attribute data. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2565-2574.CrossRefGoogle Scholar
  53. 53.
    Wang Y S, Chi M T. Focus+context metro maps. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2528-2535.CrossRefGoogle Scholar
  54. 54.
    Wongsuphasawat K, Gotz D. Exploring flow, factors, and outcomes of temporal event sequences with the outflow visualization. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2659-2668.CrossRefGoogle Scholar
  55. 55.
    Wood J, Badawood D, Dykes J, Slingsby A. BallotMaps: Detecting name bias in alphabetically ordered ballot papers. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2384-2391.CrossRefGoogle Scholar
  56. 56.
    Wood J, Dykes J. Spatially ordered treemaps. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(6): 1348-1355.CrossRefGoogle Scholar
  57. 57.
    Zhao J, Chevalier F, Pietriga E, Balakrishnan R. Exploratory analysis of time-series with chronolenses. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2422-2431.CrossRefGoogle Scholar
  58. 58.
    Sun G, Liang R, Wu F, Qu H. A web-based visual analytics system for real estate data. Science China Information Sciences, 2013, 56(5): 052112(13).Google Scholar
  59. 59.
    Cao N, Gotz D, Sun J, Qu H. Dicon: Interactive visual analysis of multidimensional clusters. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2581-2590.CrossRefGoogle Scholar
  60. 60.
    Claessen J H, van Wijk J J. Flexible linked axes for multivariate data visualization. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2310-2316.CrossRefGoogle Scholar
  61. 61.
    Geng Z, Peng Z, Laramee R S, Walker R, Roberts J C. Angular histograms: Frequency-based visualizations for large, high dimensional data. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2572-2580.CrossRefGoogle Scholar
  62. 62.
    Joia P, Paulovich F V, Coimbra D et al. Local affine multi-dimensional projection. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2563-2571.CrossRefGoogle Scholar
  63. 63.
    Keim D A, Hao M C, Dayal U. Hierarchical pixel bar charts. IEEE Transactions on Visualization and Computer Graphics, 2002, 8(3): 255-269.CrossRefGoogle Scholar
  64. 64.
    Lee J H, McDonnell K T, Zelenyuk A, Imre D, Mueller K. A structure-based distance metric for high-dimensional space exploration with multi-dimensional scaling. IEEE Transactions on Visualization and Computer Graphics, 2013, to be appeared.Google Scholar
  65. 65.
    Paiva J G, Florian L, Pedrini H, Telles G, Minghim R. Improved similarity trees and their application to visual data classification. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2459-2468.CrossRefGoogle Scholar
  66. 66.
    Steinberger M, Waldner M, Streit M et al. Context-preserving visual links. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2249-2258.CrossRefGoogle Scholar
  67. 67.
    Tatu A, Albuquerque G, Eisemann M et al. Automated analytical methods to support visual exploration of high-dimensional data. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(5): 584-597.CrossRefGoogle Scholar
  68. 68.
    Turkay C, Filzmoser P, Hauser H. Brushing dimensions — A dual visual analysis model for high-dimensional data. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2591-2599.CrossRefGoogle Scholar
  69. 69.
    Turkay C, Lundervold A, Lundervold A J, Hauser H. Representative factor generation for the interactive visual analysis of high-dimensional data. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2621-2630.CrossRefGoogle Scholar
  70. 70.
    Yuan X, Guo P, Xiao H, Zhou H, Qu H. Scattering points in parallel coordinates. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(6): 1001-1008.CrossRefGoogle Scholar
  71. 71.
    Lex A, Schulz H J, Streit M et al. VisBricks: Multiform visualization of large, inhomogeneous data. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2291-2300.CrossRefGoogle Scholar
  72. 72.
    Cao N, Lin Y R, Sun X et al. Whisper: Tracing the spatiotemporal process of information diffusion in real time. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2649-2658.CrossRefGoogle Scholar
  73. 73.
    Cao N, Sun J, Lin Y R et al. Facetatlas: Multifaceted visualization for rich text corpora. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(6): 1172-1181.CrossRefGoogle Scholar
  74. 74.
    chul Kwon B, Javed W, Ghani S et al. Evaluating the role of time in investigative analysis of document collections. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(11): 1992-2004.Google Scholar
  75. 75.
    Cui W, Liu S, Tan L et al. TextFlow: Towards better understanding of evolving topics in text. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2412-2421.CrossRefGoogle Scholar
  76. 76.
    Cui W, Wu Y, Liu S et al. Context-preserving dynamic word cloud visualization. IEEE Computer Graphics and Applications, 2010, 30(6): 42-53.MathSciNetCrossRefGoogle Scholar
  77. 77.
    Dork M, Gruen D, Williamson C, Carpendale S. A visual backchannel for large-scale events. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(6): 1129-1138.CrossRefGoogle Scholar
  78. 78.
    Koh K, Lee B, Kim B, Seo J. Maniwordle: Providing flexible control over wordle. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(6): 1190-1197.CrossRefGoogle Scholar
  79. 79.
    Luo D, Yang J, Krstajic M, Ribarsky W, Keim D A. EventRiver: Visually exploring text collections with temporal references. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(1): 93-105.CrossRefGoogle Scholar
  80. 80.
    Oelke D, Spretke D, Stoffel A, Keim D A. Visual readability analysis: How to make your writings easier to read. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(5): 662-674.CrossRefGoogle Scholar
  81. 81.
    Segel E, Heer J. Narrative visualization: Telling stories with data. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(6): 1139-1148.CrossRefGoogle Scholar
  82. 82.
    Strobelt H, Oelke D, Rohrdantz C et al. Document cards: A top trumps visualization for documents. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(6): 1145-1152.CrossRefGoogle Scholar
  83. 83.
    Viegas F B, Wattenberg M, Feinberg J. Participatory visualization with Wordle. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(6): 1137-1144.CrossRefGoogle Scholar
  84. 84.
    Wu Y, Provan T, Wei F, Liu S, Ma K L. Semantic-preserving word clouds by seam carving. Computer Graphics Forum, 2011, 30(3): 741-750.CrossRefGoogle Scholar
  85. 85.
    Xu P, Wu Y, Wei E, Peng T Q, Liu S, Zhu J H, Qu H. Visual analysis of topic competition on social media. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): to be appeared.Google Scholar
  86. 86.
    Zhao J, Chevalier F, Collins C, Balakrishnan R. Facilitating discourse analysis with interactive visualization. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2639-2648.CrossRefGoogle Scholar
  87. 87.
    Alper B, Riche N, Ramos G, Czerwinski M. Design study of linesets, a novel set visualization technique. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2259-2267.CrossRefGoogle Scholar
  88. 88.
    Bae J, Watson B. Developing and evaluating quilts for the depiction of large layered graphs. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2268-2275.CrossRefGoogle Scholar
  89. 89.
    Brandes U, Nick B. Asymmetric relations in longitudinal social networks. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2283-2290.CrossRefGoogle Scholar
  90. 90.
    Burch M, Vehlow C, Beck F, Diehl S, Weiskopf D. Parallel edge splatting for scalable dynamic graph visualization. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2344-2353.CrossRefGoogle Scholar
  91. 91.
    Crnovrsanin T, Liao I, Wu Y, Ma K L. Visual recommendations for network navigation. Computer Graphics Forum, 2011, 30(3): 1081-1090.CrossRefGoogle Scholar
  92. 92.
    Cui W, Zhou H, Qu H, Wong P C, Li X. Geometry-based edge clustering for graph visualization. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(6): 1277-1284.CrossRefGoogle Scholar
  93. 93.
    Dinkla K, Westenberg M A, van Wijk J J. Compressed adjacency matrices: Untangling gene regulatory networks. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2457-2466.CrossRefGoogle Scholar
  94. 94.
    Dork M, Riche N H, Ramos G, Dumais S. PivotPaths: Strolling through faceted information spaces. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2709-2718.CrossRefGoogle Scholar
  95. 95.
    Ellis G, Dix A. A taxonomy of clutter reduction for information visualisation. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(6): 1216-1223.CrossRefGoogle Scholar
  96. 96.
    Ersoy O, Hurter C, Paulovich F V, Cantareiro G, Telea A. Skeleton-based edge bundling for graph visualization. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2364-2373.CrossRefGoogle Scholar
  97. 97.
    Feng K C, Wang C, Shen H W, Lee T Y. Coherent time-varying graph drawing with multifocus+context interaction. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(8): 1330-1342.CrossRefGoogle Scholar
  98. 98.
    Gou L, Zhang X. TreeNetViz: Revealing patterns of networks over tree structures. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2449-2458.CrossRefGoogle Scholar
  99. 99.
    Hadlak S, Schulz H J, Schumann H. In situ exploration of large dynamic networks. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2334-2343.CrossRefGoogle Scholar
  100. 100.
    Henry N, Fekete J D. MatrixExplorer: A dual-representation system to explore social networks. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(5): 677-684.CrossRefGoogle Scholar
  101. 101.
    Henry N, Fekete J D, McGuffin M J. Nodetrix: A hybrid visualization of social networks. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(6): 1302-1309.CrossRefGoogle Scholar
  102. 102.
    Holten D. Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(5): 741-748.CrossRefGoogle Scholar
  103. 103.
    Holten D, van Wijk J J. Force-directed edge bundling for graph visualization. Computer Graphics Forum, 2009, 28(3): 983-990.CrossRefGoogle Scholar
  104. 104.
    Hurter C, Telea A, Ersoy O. MoleView: An attribute and structure-based semantic lens for large element-based plots. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2600-2609.CrossRefGoogle Scholar
  105. 105.
    Liu S, Wu Y, Wei E, Liu M, Liu Y. StoryFlow: Tracking the evolution of stories. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): to be appeared.Google Scholar
  106. 106.
    Luo S J, Liu C L, Chen B Y, Ma K L. Ambiguity-free edge-bundling for interactive graph visualization. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(5): 810-821.CrossRefGoogle Scholar
  107. 107.
    Sedlmair M, Frank A, Munzner T, Butz A. RelEx: Visualization for actively changing overlay network specifications. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2729-2738.CrossRefGoogle Scholar
  108. 108.
    Selassie D, Heller B, Heer J. Divided edge bundling for directional network data. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2354-2363.CrossRefGoogle Scholar
  109. 109.
    Tanahashi Y, Ma K L. Design considerations for optimizing storyline visualizations. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2679-2688.CrossRefGoogle Scholar
  110. 110.
    Yang J, Liu Y, Zhang X, Yuan X, Zhao Y, Barlowe S, Liu S. PIWI: Visually exploring graphs based on their community structure. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(6): 1034-1047.CrossRefGoogle Scholar
  111. 111.
    Yuan X, Che L, Hu Y, Zhang X. Intelligent graph layout using many users’ input. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2699-2708.CrossRefGoogle Scholar
  112. 112.
    Zinsmaier M, Brandes U, Deussen O, Strobelt H. Interactive level-of-detail rendering of large graphs. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2486-2495.CrossRefGoogle Scholar
  113. 113.
    Correa C D, Crnovrsanin T, Ma K L. Visual reasoning about social networks using centrality sensitivity. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(1): 106-120.CrossRefGoogle Scholar
  114. 114.
    Martins R M, Andery G F, Heberle H, Paulovich F V, de Andrade Lopes A, Pedrini H, Minghim R. Multidimensional projections for visual analysis of social networks. Journal of Computer Science and Technology, 2012, 27(4): 791-810.MathSciNetCrossRefGoogle Scholar
  115. 115.
    Bowman B, Elmqvist N, Jankun-Kelly T J. Toward visualization for games: Theory, design space, and patterns. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(11): 1956-1968.CrossRefGoogle Scholar
  116. 116.
    Trimm D, Rheingans P, des Jardins M. Visualizing student histories using clustering and composition. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2809-2818.CrossRefGoogle Scholar
  117. 117.
    Nocaj A, Brandes U. Organizing search results with a reference map. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2546-2555.CrossRefGoogle Scholar
  118. 118.
    Albuquerque G, Lowe T, Magnor M. Synthetic generation of high-dimensional datasets. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2317-2324.CrossRefGoogle Scholar
  119. 119.
    Lu Z, Liu C, Zhang Q, Zhang C, Fan D, Yang P. Visual analytics for the clustering capability of data. Science China Information Sciences, 2013, 56(5): 052110(14).CrossRefMathSciNetGoogle Scholar
  120. 120.
    Heimerl F, Koch S, Bosch H, Ertl T. Visual classifier training for text document retrieval. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2839-2848.CrossRefGoogle Scholar
  121. 121.
    Keim D A, Andrienko G, Fekete J et al. Visual analytics: Definition, process, and challenges. In Information Visualization: Human-Centered Issues and Perspectives, Kerren A, Stasko J, Fekete J et al. (eds.), Springer, 2008, pp.154-175.Google Scholar
  122. 122.
    Havre S, Hetzler B, Nowell L. Themeriver: Visualizing theme changes over time. In Proc. the IEEE Symposium on Information Visualization, Oct. 2000, pp.115-123.Google Scholar
  123. 123.
    Keim D A, Kriegel H P. Visualization techniques for mining large databases: A comparison. IEEE Transactions on Knowledge and Data Engineering, 1996, 8(6): 923-938.CrossRefGoogle Scholar
  124. 124.
    Bellman R E. Dynamic Programming. Courier Dover Publications, 2003.Google Scholar
  125. 125.
    Inselberg A, Dimsdale B. Parallel coordinates: A tool for visualizing multi-dimensional geometry. In Proc. the 1st IEEE Symposium On Visualization, Oct. 1990, pp.361-378.Google Scholar
  126. 126.
    Song Y, Pan S, Liu S, Wei F, Zhou M X, Qian W. Constrained co-clustering for textual documents. In Proc. the 24th AAAI Conference on Artificial Intelligence, July 2010, pp.581-586.Google Scholar
  127. 127.
    Zhang J, Song Y, Zhang C, Liu S. Evolutionary hierarchical dirichlet processes for multiple correlated time-varying corpora. In Proc. the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, July 2010, pp.1079-1088.Google Scholar
  128. 128.
    Munroe R. Xkcd 657: Movie narrative charts. http://xkcd.com/657, Aug. 2013.
  129. 129.
    Hullman J, Drucker S, Riche N H, Lee B, Fisher D, Adar E. A deeper understanding of sequence in narrative visualization. IEEE Transactions on Visualization and Computer Graphics, 2013, to be appeared.Google Scholar
  130. 130.
    Lee B, Kazi R H, Smith G. SketchStory: Telling more engaging stories with data through freeform sketching. IEEE Transactions on Visualization and Computer Graphics, 2013, to be appeared.Google Scholar
  131. 131.
    Correa C D, Chan Y H, Ma K L. A framework for uncertainty-aware visual analytics. In Proc. the IEEE Symposium on Visual Analytics Science and Technology, Oct. 2009, pp.51-58.Google Scholar
  132. 132.
    Tory M, Moeller T. Evaluating visualizations: Do expert re-views work? IEEE Computer Graphics and Applications, 2005, 25(5): 8-11.CrossRefGoogle Scholar
  133. 133.
    Jankun-Kelly T, Ma K L, Gertz M. A model and framework for visualization exploration. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(2): 357-369.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York & Science Press, China 2013

Authors and Affiliations

  • Guo-Dao Sun
    • 1
  • Ying-Cai Wu
    • 1
  • Rong-Hua Liang
    • 2
  • Shi-Xia Liu
    • 1
  1. 1.Internet Graphics Group, Microsoft Research AsiaBeijingChina
  2. 2.College of Information EngineeringZhejiang University of TechnologyHangzhouChina

Personalised recommendations