Advertisement

Journal of Computer Science and Technology

, Volume 28, Issue 5, pp 836–851 | Cite as

A Survey on Partial Retrieval of 3D Shapes

  • Zhen-Bao Liu
  • Shu-Hui BuEmail author
  • Kun Zhou
  • Shu-Ming Gao
  • Jun-Wei Han
  • Jun Wu
Survey

Abstract

Content-based shape retrieval techniques can facilitate 3D model resource reuse, 3D model modeling, object recognition, and 3D content classification. Recently more and more researchers have attempted to solve the problems of partial retrieval in the domain of computer graphics, vision, CAD, and multimedia. Unfortunately, in the literature, there is little comprehensive discussion on the state-of-the-art methods of partial shape retrieval. In this article we focus on reviewing the partial shape retrieval methods over the last decade, and help novices to grasp latest developments in this field. We first give the definition of partial retrieval and discuss its desirable capabilities. Secondly, we classify the existing methods on partial shape retrieval into three classes by several criteria, describe the main ideas and techniques for each class, and detailedly compare their advantages and limits. We also present several relevant 3D datasets and corresponding evaluation metrics, which are necessary for evaluating partial retrieval performance. Finally, we discuss possible research directions to address partial shape retrieval.

Keywords

3D shape partial retrieval survey classification evaluation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11390_2013_1382_MOESM1_ESM.docx (14 kb)
ESM 1 (DOCX 13 kb)

References

  1. 1.
    Shilane P, Min P, Kazhdan M, Funkhouser T. The Princeton shape benchmark. In Proc. International Conf. Shape Modeling, Jun. 2004, pp.167-178.Google Scholar
  2. 2.
    Siddiqi K, Zhang J, Macrini D, Shokoufandeh A, Bouix S, Dickinson S. Retrieving articulated 3-D models using medial surfaces. Machine Vision and Applications, 2008, 19(4): 261-275.CrossRefGoogle Scholar
  3. 3.
    Chen D Y, Tian X P, Shen Y T, Ouhyoung M. On visual similarity based 3D model retrieval. Computer Graphics Forum, 2003, 22(3): 223-232.CrossRefGoogle Scholar
  4. 4.
    Jayanti S, Kalyanaraman Y, Iyer N, Ramani K. Developing an engineering shape benchmark for CAD models. Computer-Aided Design, 2006, 38(9): 939-953.CrossRefGoogle Scholar
  5. 5.
    Bustos B, Keim D A, Saupe D, Schreck T, Vranić D V. Feature-based similarity search in 3D object databases. ACM Computing Surveys, 2005, 37(4): 345-387.CrossRefGoogle Scholar
  6. 6.
    Tangelder J W H, Veltkamp R C. A survey of content based 3D shape retrieval methods. Multimedia Tools and Applications, 2008, 39(3): 441-471.CrossRefGoogle Scholar
  7. 7.
    Yang Y, Lin H, Zhang Y. Content-based 3-D model retrieval: A survey. IEEE Transactions on Systems Man and Cybernetics — Part C: Applications and Reviews, 2007, 37(6): 1081-1598.CrossRefGoogle Scholar
  8. 8.
    Biasotti S, Falcidieno B, Frosini P, Giorgi D, Landi C, Marini S, Patané G, Spagnuolo M. 3D shape description and matching based on properties of real functions. In Proc. Eurographics, Sept. 2007, pp.949-998.Google Scholar
  9. 9.
    Cardone A, Gupta S K, Karnik M. A survey of shape similarity assessment algorithms for product design and manufacturing applications. Journal of Computing and Information Science in Engineering, 2003, 3(2): 109-118.CrossRefGoogle Scholar
  10. 10.
    Bimbo A D, Pala P. Content-based retrieval of 3D models. ACM Transactions on Multimedia Computing, Communications, and Applications, 2006, 2(1): 20-43.CrossRefGoogle Scholar
  11. 11.
    Iyer N, Jayanti S, Lou K, Kalyanaraman Y, Ramani K. Three-dimensional shape searching: State-of-the-art review and future trends. Computer-Aided Design, 2005, 37(5): 509-530.CrossRefGoogle Scholar
  12. 12.
    Besl P J, Jain R C. Three-dimensional object recognition. ACM Computing Surveys, 1985, 17(1): 75-145.CrossRefGoogle Scholar
  13. 13.
    van Kaick O, Zhang H, Hamarneh G, Cohen-Or D. A survey on shape correspondence. Computer Graphics Forum, 2011, 30(6): 1681-1707.CrossRefGoogle Scholar
  14. 14.
    Bronstein A M, Bronstein M M, Kimmel R. Numerical Geometry of Non-Rigid Shapes. New York: Springer, 2009.Google Scholar
  15. 15.
    Shamir A. A survey on mesh segmentation techniques. Computer Graphics Forum, 2008, 27(6): 1539-1556.CrossRefzbMATHGoogle Scholar
  16. 16.
    Chen X, Golovinskiy A, Funkhouser T. A benchmark for 3D mesh segmentation. ACM Transactions on Graphics, 2009, 28(3): Article No. 73.CrossRefGoogle Scholar
  17. 17.
    Xu W, Zhou K. Gradient domain mesh deformation — A survey. Journal of Computer Science and Technology, 2009, 24(1): 6-18.CrossRefGoogle Scholar
  18. 18.
    Mitra N J, Pauly M, Wand M, Ceylan D. Symmetry in 3D geometry: Extraction and applications. In Proc. Eurographics, May 2012, pp.1-23.Google Scholar
  19. 19.
    Tam G K L, Cheng Z Q, Lai Y K, Langbein F C, Liu Y, Marshall D, Martin R R, Sun X F, Rosin P L. Registration of 3D point clouds and meshes: A survey from rigid to nonrigid. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(7): 1199-1217.CrossRefGoogle Scholar
  20. 20.
    Mikolajczyk K, Schmid C. A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.CrossRefGoogle Scholar
  21. 21.
    Gelfand N, Mitra N J, Guibas L J, Pottmann H. Robust global registration. In Proc. the 3rd Eurographics Symposium on Geometry Processing, Jul. 2005, pp.197-206.Google Scholar
  22. 22.
    Bronstein A M, Bronstein M M, Bustos B, Castellani U, Crisani M, Falcidieno B, Guibas L J, Kokkinos I, Murino V, Ovsjanikov M, Patané G, Sipiran I, Spagnuolo M, Sun J. SHREC 2010: Robust feature detection and description benchmark. In Proc. the 3rd Eurographics Workshop on 3D Object Retrieval, May 2010, pp.79-86.Google Scholar
  23. 23.
    Boyer E, Bronstein A M, Bronstein M M, Bustos B, Darom T, Horaud R, Hotz I, Keller Y, Keustermans J, Kovnatsky A, Litman R, Reininghaus J, Sipiran I, Smeets D, Suetens P, Vandermeulen D, Zaharescu A, Zobel V. SHREC 2011: Robust feature detection and description benchmark. In Proc. the 4th Eurographics Workshop on 3D Object Retrieval, May 2011, pp.71-78.Google Scholar
  24. 24.
    Sipiran I. Local features for partial shape matching and retrieval. In Proc. the 19th ACM Multimedia, Nov. 2011, pp.853-856.Google Scholar
  25. 25.
    Attene M, Marini S, Spagnuolo M, Falcidieno B. Part-in-whole 3D shape matching and docking. The Visual Computer, 2011, 27(11): 991-1004.CrossRefGoogle Scholar
  26. 26.
    Digne J, Morel J M, Audfray N, Mehdi-Souzani C. The level set tree on meshes. In Proc. the 5th International Symposium on 3D Data Processing, Visualization and Transmission, May 2010, pp.183-191.Google Scholar
  27. 27.
    Pauly M, Keiser R, Gross M. Multi-scale feature extraction on point-sampled surfaces. Computer Graphics Forum, 2003, 22(3): 281-290.CrossRefGoogle Scholar
  28. 28.
    Shilane P, Funkhouser T. Distinctive regions of 3D surfaces. ACM Transactions on Graphics, 2007, 26(2): Article No. 7.CrossRefGoogle Scholar
  29. 29.
    Parikh D, Sukthankar R, Chen T, Chen M. Feature-based part retrieval for interactive 3D reassembly. In Proc. the 8th IEEE Workshop on Applications of Computer Vision, Feb. 2007, Article No. 14.Google Scholar
  30. 30.
    Sipiran I, Bustos B. Harris 3D: A robust extension of the harris operator for interest point detection on 3D meshes. The Visual Computer, 2011, 27(11): 963-976.CrossRefGoogle Scholar
  31. 31.
    Castellani U, Cristani M, Murino V. Statistical 3D shape analysis by local generative descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2555-2560.CrossRefGoogle Scholar
  32. 32.
    Tabia H, Daoudi M, Vandeborre J P, Colot O. A new 3D- matching method of nonrigid and partially similar models using curve analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(4): 852-858.CrossRefGoogle Scholar
  33. 33.
    Bariya P, Novatnack J, Schwartz G, Nishino K. 3D geometric scale variability in range images: Features and descriptors. International Journal of Computer Vision, 2012, 99(2): 232-255.MathSciNetCrossRefGoogle Scholar
  34. 34.
    Johnson A E, Hebert M. Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(5):433-449.CrossRefGoogle Scholar
  35. 35.
    Wang X, Liu Y, Zha H. Intrinsic spin images: A subspace decomposition approach to understanding 3D deformable shapes. In Proc. the 5th Interactional Symposium on 3D Data Processing Visualization and Transmission, May 2010, pp.225-233.Google Scholar
  36. 36.
    Sipiran I, Meruane R, Bustos B, Schreck T, Johan H, Li B, Lu Y. SHREC 2013: Large-scale partial shape retrieval using simulated range images. In Proc. the 6th Eurographics Workshop on 3D Object Retrieval, May 2013, pp.81-88.Google Scholar
  37. 37.
    Malassiotis S, Strintzis M G. Snapshots: A novel local surface descriptor and matching algorithm for robust 3D surface alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(7): 1285-1290.CrossRefGoogle Scholar
  38. 38.
    Kazhdan M, Funkhouser T, Rusinkiewicz S. Rotation invariant spherical harmonic representation of 3D shape descriptors. In Proc. Eurographics Symposium on Geometry Processing, Jul. 2003, pp.156-164.Google Scholar
  39. 39.
    Fehr J, Streicher A, Burkhardt H. A bag of features approach for 3D shape retrieval. In Proc. the 5th International Symposium on Visual Computing, Nov. 30-Dec. 2, 2009, pp.34-43.Google Scholar
  40. 40.
    Hu J, Hua J. Salient spectral geometric features for shape matching and retrieval. The Visual Computer, 2009, 25(5/7):667-675.CrossRefGoogle Scholar
  41. 41.
    Wu H, Zha H, Luo T, Wang X, Ma S. Global and local isometry-invariant descriptor for 3D shape comparison and partial matching. In Proc. IEEE Computer Vision and Pattern Recognition, Jun. 2010, pp.438-445.Google Scholar
  42. 42.
    Dubrovina A, Kimmel R. Matching shapes by eigendecom- position of the Laplace-Beltrami operator. In Proc. the 5th International Symposium on 3D Data Processing Visualization and Transmission, May 2010, pp.225-233.Google Scholar
  43. 43.
    Lavoué G. Bag of words and local spectral descriptor for 3D partial shape retrieval. In Proc. the 4th Eurographics Workshop on 3D Object Retrieval, Apr. 2011, pp.41-48.Google Scholar
  44. 44.
    Sun J, Ovsjanikov M, Guibas L. A concise and provably informative multi-scale signature based on heat diffusion. Computer Graphics Forum, 2009, 28(5): 1383-1392.CrossRefGoogle Scholar
  45. 45.
    Bronstein A M, Bronstein M M, Guibas L J, Ovsjanikov M. Shape google: Geometric words and expressions for invariant shape retrieval. ACM Transactions on Graphics, 2011, 30(1): Article No. 1.CrossRefGoogle Scholar
  46. 46.
    Hou T, Qin H. Robust dense registration of partial nonrigid shapes. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(8): 1268-1280.CrossRefGoogle Scholar
  47. 47.
    Ovsjanikov M, Mérigot Q, Mémoli F, Guibas L J. One point isometric matching with the heat kernel. Computer Graphics Forum, 2010, 29(5): 1555-1564.CrossRefGoogle Scholar
  48. 48.
    Raviv D, Bronstein M M, Bronstein A M, Kimmel R. Volumetric heat kernel signatures. In Proc. ACM Workshop on 3D Object Retrieval, Oct. 2010, pp.39-44.Google Scholar
  49. 49.
    Litman R, Bronstein A M, Bronstein M M. Stable volumetric features in deformable shapes. Computer and Graphics, 2012, 36(5): 569-576.CrossRefGoogle Scholar
  50. 50.
    Dey T K, Li K, Luo C, Ranjan P, Safa I, Wang Y. Persistent heat signature for pose-oblivious matching of incomplete models. Computer Graphics Forum, 2010, 29(5): 1545-1554.CrossRefGoogle Scholar
  51. 51.
    Rustamov R M. Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In Proc. the 5th Eurographics Symp. Geometric Processing, Jul. 2007, pp.225-233.Google Scholar
  52. 52.
    Bronstein M M, Kokkinos I. Scale-invariant heat kernel signatures for non-rigid shape recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2010, pp.1704-1711.Google Scholar
  53. 53.
    Castellani U, Cristani M, Fantoni S, Murino V. Sparse points matching by combining 3D mesh saliency with statistical descriptors. Computer Graphics Forum, 2008, 27(2): 643-652.CrossRefGoogle Scholar
  54. 54.
    Zaharescu A, Boyer E, Varanasi K, Horaud R. Surface feature detection and description with applications to mesh matching. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2009, pp.373-380.Google Scholar
  55. 55.
    Zou G, Hua J, Dong M, Qin H. Surface matching with salient keypionts in geodesic scale space. Computer Animation and Virtual Worlds, 2008, 19(3/4): 399-410.CrossRefGoogle Scholar
  56. 56.
    Knopp J, Prasad M, Willems G, Timofte R, van Gool L. Hough transform and 3D SURF for robust three dimensional classification. In Proc. the 11th European Conference on Computer Vision, Sept. 2010, pp.589-602.Google Scholar
  57. 57.
    Litman R, Bronstein A M, Bronstein M M. Diffusion- geometric maximally stable component detection in deformable shapes. Computer and Graphics, 2011, 35(3): 549-560.CrossRefGoogle Scholar
  58. 58.
    K¨ortgen M, Novotni M, Klein R. 3D shape matching with 3D shape contexts. In Proc. the 7th Central European Seminar on Computer Graphics, Apr. 2003.Google Scholar
  59. 59.
    Frome A, Huber D, Kolluri R, Bu¨low T, Malik J. Recognizing objects in range data using regional point descriptors. In Proc. the 8th European Conference on Computer Vision, May 2004, pp.224-237.Google Scholar
  60. 60.
    Kokkinos I, Bronstein M M, Litman R, Bronstein A M. Intrinsic shape context descriptors for deformable shapes. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2012, pp.159-166.Google Scholar
  61. 61.
    Skelly L J, Sclaroff S. Improved feature descriptors for 3D surface matching. In Proceedings of SPIE 6762, Huang P S (editor), SPIE, 2007.Google Scholar
  62. 62.
    Berretti S, Bimbo A D, Pala P. Partial match of 3D faces using facial curves between SIFT keypoints. In Proc. the 4th Eurographics Workshop on 3D Object Retrieval, Apr. 2011, pp.117-120.Google Scholar
  63. 63.
    Kovnatsky A, Bronstein M M, Bronstein A M, Raviv D, Kimmel R. Affine-invariant photometric heat kernel signatures. In Proc. the 5th Eurographics Conference on 3D Object Retrieval, May 2012, pp.39-46.Google Scholar
  64. 64.
    Li B, Godil A, Johan H. Hybrid shape descriptor and meta similarity generation for non-rigid and partial 3D model retrieval. Multimedia Tools and Applications, April 2013 (Online), 63(3).Google Scholar
  65. 65.
    Kanezaki A, Harada T, Kuniyoshi Y. Partial matching of real textured 3D objects using color cubic higher-order local auto-correlation features. The Visual Computer, 2010, 26(10): 1269-1281.CrossRefGoogle Scholar
  66. 66.
    Li B, Johan H. 3D model retrieval using hybrid features and class information. Multimedia Tools and Applications, 2013, 62(3): 821-846.CrossRefGoogle Scholar
  67. 67.
    Li K, Shahwan A, Trlin M, Foucault G, Léon J C. Automated contextual annotation of B-Rep CAD mechanical components deriving technology and symmetry information to support partial retrieval. In Proc. the 5th Eurographics Conference on 3D Object Retrieval, May 2012, pp.67-70.Google Scholar
  68. 68.
    Liu Y, Wang X L, Wang H Y, Zha H, Qin H. Learning robust similarity measures for 3D partial shape retrieval. International Journal of Computer Vision, 2010, 89(2/3): 408-431.CrossRefGoogle Scholar
  69. 69.
    Lee C H, Varshney A, Jacobs D W. Mesh saliency. ACM Transactions on Graphics, 2005, 24(3): 659-666.CrossRefGoogle Scholar
  70. 70.
    ter Haar F B, Veltkamp R C. Automatic multiview quadruple alignment of unordered range scans. In Proc. IEEE Conference on Shape Modeling and Applications, Jun. 2007, pp.137-146.Google Scholar
  71. 71.
    Bokeloh M, Berner A, Wand M, Seidel H P, Schilling A. Slippage features. Technical Report WSI-2008-03, University of Tübingen, Germany, June 2008.Google Scholar
  72. 72.
    Bronstein A M, Bronstein M M. Regularized partial matching of rigid shapes. In Proc. the 10th European Conference on Computer Vision, Oct 2008, pp.143-154.Google Scholar
  73. 73.
    Bronstein A M, Bronstein M M, Bruckstein A M, Kimmel R. Partial similarity of objects or, how to compare a centaur to a horse. International Journal of Computer Vision, 2009, 84(2): 163-183.CrossRefGoogle Scholar
  74. 74.
    Shan Y, Sawhney H S, Matei B, Kumar R. Shapeme histogram projection and matching for partial object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 568-577.CrossRefGoogle Scholar
  75. 75.
    Liu Y, Zha H, Qin H. Shape topics: A compact representation and new algorithms for 3D partial shape retrieval. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2006, pp.2025-2032.Google Scholar
  76. 76.
    Li X, Godil A. Investigating the bag-of-words method for 3D shape retrieval. EURASIP Journal on Advances in Signal Processing, 2010, 2010: Article No. 5.Google Scholar
  77. 77.
    Lavoué G. Combination of bag-of-words descriptors for robust partial shape retrieval. The Visual Computer, 2012, 28(9):931-942.CrossRefGoogle Scholar
  78. 78.
    Kawamura S, Usui K, Furuya T, Ohbuchi R. Local goemetrical feature with spatial context for shape-based 3D model retrieval. In Proc. the 5th Eurographics Workshop on 3D Object Retrieval, May 2012, pp.55-58.Google Scholar
  79. 79.
    Funkhouser T, Shilane P. Partial matching of 3D shapes with priority-driven search. In Proc. the 4th Eurographics Symposium on Geometry Processing, Jun. 2006, pp.131-142.Google Scholar
  80. 80.
    Shapira L, Shalom S, Shamir A, Cohen-Or D, Zhang H. Contextual part analogies in 3D objects. International Journal of Computer Vision, 2010, 89(2/3): 309-326.CrossRefGoogle Scholar
  81. 81.
    Schreck T, Scherer M, Walter M, Bustos B, Yoon S M, Kuijper A. Graph-based combinations of fragment descriptors for improved 3D object retrieval. In Proc. the 3rd ACM Multimedia Systems Conference, Feb. 2012, pp.23-28.Google Scholar
  82. 82.
    Schreck T, Bustos B, Walter M. A query-by-example concept and user interface for global and partial 3D object retrieval. In Proc. the 2nd Eurographics Workshop on 3D Object Retrieval, Mar. 2009.Google Scholar
  83. 83.
    Gal R, Cohen-Or D. Salient geometric features for partial shape matching and similarity. ACM Transactions on Graphics, 2006, 25(1): 130-150.CrossRefGoogle Scholar
  84. 84.
    Toldo R, Castellani U, Fusiello A. Visual vocabulary signature for 3D object retrieval and partial matching. In Proc. the 2nd Eurographics Workshop on 3D Object Retrieval, Mar. 2009, pp.21-28.Google Scholar
  85. 85.
    Ferreira A, Marini S, Attene M, Fonseca M J, Spagnuolo M, Jorge J A, Falcidieno B. Thesaurus-based 3D object retrieval with part-in-whole matching. International Journal of Computer Vision, 2010, 89(2/3): 327-347.CrossRefGoogle Scholar
  86. 86.
    Itskovich A, Tal A. Surface partial matching and application to archaeology. Computers and Graphics, 2011, 35(2): 334-341.CrossRefGoogle Scholar
  87. 87.
    Agathos A, Pratikakis I, Papadakis P, Perantonis S, Azariadis P, Sapidis N S. 3D articulated object retrieval using a graph-based representation. The Visual Computer, 2010, 26(10):1301-1319.CrossRefGoogle Scholar
  88. 88.
    Mademlis A, Daras P, Axenopoulos A, Tzovaras D, Strintzis M G. Combining topological and geometrical features for global and partial 3-D shape retrieval. IEEE Transactions on Multimedia, 2008, 10(5): 819-831.CrossRefGoogle Scholar
  89. 89.
    Cornea N D, Demirci M F, Silver D E, Shokoufandeh A C, Dickinson S J, Kantor P B. 3D object retrieval using many-to-many matching of curve skeletons. In Proc. International Conf. Shape Modeling, Jun. 2005, pp.368-373.Google Scholar
  90. 90.
    Hilaga M, Shinagawa Y, Kohmura T, Kunii T L. Topology matching for fully automatic similarity estimation of 3D shapes. In Proc. the 28th ACM SIGGRAPH, Aug. 2001, pp.203-212.Google Scholar
  91. 91.
    Tierny J, Vandeborre J P, Daoudi M. Partial 3D shape retrieval by reeb pattern unfolding. Computer Graphics Forum, 2009, 28(1): 41-55.CrossRefGoogle Scholar
  92. 92.
    Biasotti S, Marini S, Spagnuolo M, Falcidieno B. Subpart correspondence by structural descriptors of 3D shapes. Computer-Aided Design, 2006, 38(9): 1002-1019.CrossRefGoogle Scholar
  93. 93.
    Tung T, Schmitt F. The augmented multiresolution reeb graph approach for content-based retrieval of 3D shapes. International Journal of Shape Modeling, 2005, 11(1): 91-120.CrossRefGoogle Scholar
  94. 94.
    Areevijit W, Kanongchaiyos P. Reeb graph based partial shape retrieval for non-rigid 3D object. In Proc. the 10th ACM SIGGRAPH Conference on Virtual Reality Continuum and Its Applications in Industry, Dec. 2011, pp.573-576.Google Scholar
  95. 95.
    Osada R, Funkhouser T, Chazelle B, Dobkin D. Shape distributions. ACM Transactions on Graphics, 2002, 21(4): 807-832.CrossRefGoogle Scholar
  96. 96.
    Surazhsky V, Surazhsky T, Kirsanov D, Gortler S J, Hoppe H. Fast exact and approximate geodesics on meshes. ACM Transactions on Graphics, 2005, 25(4): 553-560.CrossRefGoogle Scholar
  97. 97.
    Lipman Y, Rustamov R M, Funkhouser T. Biharmonic distance. ACM Transactions on Graphics, 2010, 29(3): Article No. 27.CrossRefGoogle Scholar
  98. 98.
    Papadakis P, Pratikakis I, Perantonis S, Theoharis T. Efficient 3D shape matching and retrieval using a concrete radialized spherical projection representation. Pattern Recognition, 2007, 40(9): 2437-2452.CrossRefzbMATHGoogle Scholar
  99. 99.
    Hu K M, Wang B, Yong J H, Paul J C. Relaxed lightweight assembly retrieval using vector space model. Computer-Aided Design, 2013, 45(3): 739-750.CrossRefGoogle Scholar
  100. 100.
    Liu Z, Bu S, Zhou K, Sun X. Geometrically attributed binary tree for 3D shape matching. In Proc. the 25th International Conference on Computer Graphics, Jun. 2011.Google Scholar
  101. 101.
    Li M, Zhang Y F, Fuh J Y H. Retrieving reusable 3D CAD models using knowledge-driven dependency graph partitioning. Computer-Aided Design and Applications, 2010, 7(3):417-430.CrossRefGoogle Scholar
  102. 102.
    Tao S, Huang Z, Zuo B, Peng Y, Kang W. Partial retrieval of CAD models based on the gradient flows in lie group. Pattern Recognition, 2012, 45(4): 1721-1738.CrossRefzbMATHGoogle Scholar
  103. 103.
    Chen X, Gao S, Guo S, Bai J. A flexible assembly retrieval approach for model reuse. Computer-Aided Design, 2012, 44(6):554-574.CrossRefGoogle Scholar
  104. 104.
    Ullmann J R. An algorithm for subgraph isomorphism. Journal of ACM, 1976, 23(1): 31-42.MathSciNetCrossRefGoogle Scholar
  105. 105.
    Hong T, Lee K, Kim S. Similarity comparison of mechanical parts to reuse existing designs. Computer-Aided Design, 2006, 38(9): 973-984.CrossRefGoogle Scholar
  106. 106.
    van Wyk B J, van Wyk M A. A POCS-based graph matching algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(11): 1526-1530.CrossRefGoogle Scholar
  107. 107.
    Suzuki M T, Yaginuma Y, Shimizu Y. A partial shape matching technique for 3D model retrieval systems. In Proc. ACM SIGGRAPH, Jul. 2005, Article No. 128.Google Scholar
  108. 108.
    Li X, Godil A, Wagan A. Spatially enhanced bags of words for 3D shape retrieval. In Proc. the 4th Symposium on Visual Computing, Dec. 2008, pp.349-358.Google Scholar
  109. 109.
    Tabia H, Picard D, Laga H, Gosselin P H. Compact vectors of locally aggregated tensors for 3D shape retrieval. In Proc. the 6th Eurographics Workshop on 3D object retrieval, May 2013, pp.17-24.Google Scholar
  110. 110.
    Funkhouser T, Min P, Kazhdan M, Chen J, Halderman A, Dobkin D, Jacobs D. A search engine for 3D models. ACM Transactions on Graphics, 2003, 22(1): 83-105.CrossRefGoogle Scholar
  111. 111.
    Yoon S M, Scherer M, Schreck T, Kuijper A. Sketch-based 3D model retrieval using diffusion tensor fields of suggestive contours. In Proc. the 18th ACM Multimedia, Oct. 2010, pp.193-200.Google Scholar
  112. 112.
    Vajramushti N, Kakadiaris I A, Theoharis T, Papaioannou G. Efficient 3D object retrieval using depth images. In Proc. the 6th ACM Multimedia Information Retreival, Oct. 2004, pp.189-196.Google Scholar
  113. 113.
    Passalis G, Theoharis T, Kakadiaris I A. Ptk: A novel depth buffer-based shape descriptor for three-dimensional object retrieval. The Visual Computer, 2006, 23(1): 5-14.CrossRefGoogle Scholar
  114. 114.
    Liu Z, Mitani J, Fukui Y, Nishihara S. multiresolution wavelet analysis of shape orientation for 3D shape retrieval. In Proc. the 1st ACM Multimedia Information Retrieval, Oct. 2008, pp.403-410.Google Scholar
  115. 115.
    Ohbuchi R, Osada K, Furuya T, Banno T. Salient local visual features for shape-based 3D model retrieval. In Proc. International Conference on Shape Modeling, Jun. 2008, pp.93-102.Google Scholar
  116. 116.
    Papadakis P, Pratikakis I, Theoharis T, Passalis G, Perantonis S. 3D object retrieval using an efficient and compact hybrid shape descriptor. In Proc. the 1st Eurographics Workshop on 3D Object Retrieval, Apr. 2008, pp.9-16.Google Scholar
  117. 117.
    Stavropoulos G, Moschonas P, Moustakas K, Tzovaras D, Strintzis M G. 3-D model search and retrieval from range images using salient features. IEEE Transactions on Multimedia, 2010, 12(7): 692-704.CrossRefGoogle Scholar
  118. 118.
    Laga H, Takahashi H, Nakajima M. Geometry image matching for similarity estimation of 3D shapes. In Proc. International Conference on Computer Graphics, Jun. 2004, pp.490-496.Google Scholar
  119. 119.
    Sfikas K, Pratikakis I, Theoharis T. 3D object retrieval via range image queries based on SIFT descriptors on panoramic views. In Proc. the 5th Eurographics Workshop on 3D Object Retrieval, May 2012, pp.9-15.Google Scholar
  120. 120.
    Dutagaci H, Godil A, Axenopoulos A, Daras P, Furuya T, Ohbuchi R. SHREC’09 track: Querying with partial models. In Proc. the 2nd Eurographics Workshop on 3D Object Retrieval, Mar. 2009, pp.69-76.Google Scholar
  121. 121.
    Papadakis P, Pratikakis I, Theoharis T, Perantonis S. PANORAMA: A 3D shape descriptor based on panoramic views for unsupervised 3D object retrieval. International Journal of Computer Vision, 2010, 89(2/3): 177-192.CrossRefGoogle Scholar
  122. 122.
    Liu Z, Wang Z, Ma C, Zhang C, Mitani J, Fukui Y. Shape alignment and shape orientation analysis-based 3D shape retrieval system. Multimedia Systems, 2010, 16(4/5): 319-333.CrossRefGoogle Scholar
  123. 123.
    Zarpalas D, Daras P, Axenopoulos A, Tzovaras D, Strintzis M G. 3D model search and retrieval using the spherical trace transform. EURASIP Journal on Advances in Signal Processing, 2007, 27(1): Article No. 207.Google Scholar
  124. 124.
    Furuya T, Ohbuchi R. Dense sampling and fast encoding for 3D model retrieval using bag-of-visual features. In Proc. the 8th ACM Conference on Image and Video Retrieval, Jul. 2009, Article No. 26.Google Scholar
  125. 125.
    Gao Y, Yang Y, Dai Q, Zhang N. 3D object retrieval with bag-of-region-words. In Proc. the 18th ACM Multimedia, Oct. 2010, pp.955-958.Google Scholar
  126. 126.
    Eitz M, Richter R, Boubekeur T, Hildebrand K, Alexa M. Sketch-based shape retrieval. ACM Transactions on Graphics, 2012, 31(4): Article No. 31.Google Scholar
  127. 127.
    Wang M, Gao Y, Lu K, Rui Y. View-based discriminative probabilistic modeling for 3D object retrieval and recognition. IEEE Transactions on Image Processing, 2013, 22(4):1395-1407.MathSciNetCrossRefGoogle Scholar
  128. 128.
    Sfikas K, Theoharis T, Pratikakis I. ROSy+: 3D object pose normalization based on PCA and reflective object symmetry with application in 3D object retrieval. International Journal of Computer Vision, 2011, 91(3): 262-279.CrossRefGoogle Scholar
  129. 129.
    Laga H. Semantic-driven approach for automatic selection of best views of 3D shapes. In Proc. the 3rd Eurographics Workshop on 3D Object Retrieval, May 2010, pp.15-22.Google Scholar
  130. 130.
    Giorgi D, Mortara M, Spagnuolo M. 3D shape retrieval based on best view selection. In Proc. ACM Conference on 3D Object Retrieval, Oct. 2010, pp.9-14.Google Scholar
  131. 131.
    Gao Y, Wang M, Shen J, Dai Q, Zhang N. Intelligent query: Open another door to 3D object retrieval. In Proc. the 18th ACM Multimedia, Oct. 2010, pp.1711-1714.Google Scholar
  132. 132.
    Gao Y, Yang Y, Dai Q, Zhang N. Representative views reranking for 3D model retrieval with multi-bipartite graph reinforcement model. In Proc. the 18th ACM Multimedia, Oct. 2010, pp.947-950.Google Scholar
  133. 133.
    Shao T, Xu W, Yin K, Wang J, Zhou K, Guo B. Discriminative sketch-based 3D model retrieval via robust shape matching. Computer Graphics Forum, 2011, 30(7): 2011-2020.CrossRefGoogle Scholar
  134. 134.
    Liu Y J, Luo X, Joneja A, Ma C X, Fu X L, Song D. User-adaptive sketch-based 3-D CAD model retrieval. IEEE Transactions on Automation Science and Engineering, 2013, 10(3): 783-795.CrossRefGoogle Scholar
  135. 135.
    Bronstein A M, Bronstein M M, Castellani U et al. SHREC 2010: Robust correspondence benchmark. In Proc. the 3rd Eurographics Workshop on 3D Object Retrieval, May 2010, pp.87-91.Google Scholar
  136. 136.
    Marini S, Paraboschi L, Biasotti S. Shape retrieval contest 2007: Partial matching track. In Proc. SHREC, Jun. 2007, pp.13-16.Google Scholar
  137. 137.
    Dutagaci H, Godil A, Cheung C P, Furuya T, Hillenbrand U, Ohbuchi R. SHREC’10 track: Range scan retrieval. In Proc. the 3rd Eurographics Workshop on 3D Object Retrieval, May 2010, pp.109-115.Google Scholar
  138. 138.
    Dutagaci H, Godil A. SHREC’11 track: Range scan retrieval. http://www.itl.nist.gov/iad/vug/sharp/contest/2011/Range-Scans/, 2011.
  139. 139.
    Fisher M, Hanrahan P. Context-based search for 3D models. ACM Transactions on Graphics, 2010, 29(6): Article No. 182.CrossRefGoogle Scholar
  140. 140.
    Fisher M, Savva M, Hanrahan P. Characterizing structural relationships in scenes using graph kernels. ACM Transactions on Graphics, 2011, 30(4): Article No. 34.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York & Science Press, China 2013

Authors and Affiliations

  • Zhen-Bao Liu
    • 1
  • Shu-Hui Bu
    • 1
    Email author
  • Kun Zhou
    • 2
  • Shu-Ming Gao
    • 2
  • Jun-Wei Han
    • 3
  • Jun Wu
    • 4
  1. 1.School of AeronauticsNorthwestern Polytechnical UniversityXi’anChina
  2. 2.College of Computer Science and TechnologyZhejiang UniversityHangzhouChina
  3. 3.School of AutomationNorthwestern Polytechnical UniversityXi’anChina
  4. 4.School of Electronics and InformationNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations