Journal of Computer Science and Technology

, Volume 28, Issue 2, pp 247–254 | Cite as

Complete Boolean Satisfiability Solving Algorithms Based on Local Search

  • Wen-Sheng Guo
  • Guo-Wu Yang
  • William N. N. Hung
  • Xiaoyu Song
Regular Paper


Boolean satisfiability (SAT) is a well-known problem in computer science, artificial intelligence, and operations research. This paper focuses on the satisfiability problem of Model RB structure that is similar to graph coloring problems and others. We propose a translation method and three effective complete SAT solving algorithms based on the characterization of Model RB structure. We translate clauses into a graph with exclusive sets and relative sets. In order to reduce search depth, we determine search order using vertex weights and clique in the graph. The results show that our algorithms are much more effective than the best SAT solvers in numerous Model RB benchmarks, especially in those large benchmark instances.


Boolean satisfiability set clique local search complete search 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11390_2013_1326_MOESM1_ESM.doc (27 kb)
(DOC 27.0 KB)


  1. [1]
    Cook S A. The complexity of theorem-proving procedures. In Proc. the 3rd Symp. Theory of Comput., May 1971, pp.151-158.Google Scholar
  2. [2]
    Larrabee T. Test pattern generation using Boolean satisfiability. IEEE Trans. CAD, 1992, 11(1): 4–15.Google Scholar
  3. [3]
    Biere A, Cimatti A, Clarke E M, Fujita M, Zhu Y. Symbolic model checking using SAT procedures instead of BDDs. In Proc. the 36th Conf. Design Automation, June 1999, pp.317-320.Google Scholar
  4. [4]
    Bjesse P, Leonard T, Mokkedem A. Finding bugs in an Alpha microprocessor using satisfiability solvers. In Lecture Notes in Computer Science 2102, Berry G, Comon H, Finkel A (eds.), Springer-Verlag, 2001, pp.454-464.Google Scholar
  5. [5]
    Hung W N N, Narasimhan N. Reference model based RTL verification: An integrated approach. In Proc. the 9th HLDVT, November 2004, pp.9-13.Google Scholar
  6. [6]
    Hung W N N, Song X, Yang G, Yang J, Perkowski M. Optimal synthesis of multiple output Boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans. CAD, 2006, 25(9): 1652–1663.Google Scholar
  7. [7]
    Hung W N N, Gao C, Song X, Hammerstrom D. Defect tolerant CMOL cell assignment via satisfiability. IEEE Sensors Journal, 2008, 8(6): 823–830.CrossRefGoogle Scholar
  8. [8]
    Wood R G, Rutenbar R A. FPGA routing and routability estimation via Boolean satisfiability. In Proc. the 5th Int. Symp. Field-Programmable Gate Arrays, Feb. 1997, pp.119-125.Google Scholar
  9. [9]
    Song X, Hung W N N, Mishchenko A, Chrzanowska-Jeske M, Kennings A, Coppola A. Board-level multiterminal net assignment for the partial cross-bar architecture. IEEE Trans. VLSI Systems, 2003, 11(3): 511–514.CrossRefGoogle Scholar
  10. [10]
    Hung W N N, Song X, Kam T, Cheng L, Yang G. Routability checking for three-dimensional architectures. IEEE Trans. VLSI Systems, 2004, 12(12): 1371–1374.CrossRefGoogle Scholar
  11. [11]
    Hung W N N, Song X, Aboulhamid E M et al. Segmented channel routability via satisfiability. Trans. Design Automation of Electronic Systems, 2004, 9(4): 517–528.CrossRefGoogle Scholar
  12. [12]
    He F, Hung W N N, Song X, Gu M, Sun J. A satisfiability formulation for FPGA routing with pin rearrangements. International Journal of Electronics, 2007, 94(9): 857–868.CrossRefGoogle Scholar
  13. [13]
    Wang J, Chen M, Wan X, Wei J. Ant-colony-optimizationbased scheduling algorithm for uplink CDMA nonreal-time data. IEEE Trans. Vehicular Tech., 2009, 58(1): 231–241.CrossRefGoogle Scholar
  14. [14]
    Wang J, Chen M,Wang J. Adaptive channel and power allocation of downlink multi-user MC-CDMA systems. Computers and Electrical Engineering, 2009, 35(5): 622–633.zbMATHCrossRefGoogle Scholar
  15. [15]
    Wang J, Chen H, Chen M et al. Cross-layer packet scheduling for downlink multiuser OFDM systems. Science in China Series F: Inform. Sci., 2009, 52(12): 2369–2377.zbMATHCrossRefGoogle Scholar
  16. [16]
    Davis M, Putnam H. A computing procedure for quantification theory. J. ACM, 1960, 7(3): 201–215.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    Davis M, Logemann G, Loveland D. A machine program for theorem proving. Comms. ACM, 1962, 5(7): 394–397.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    Gu J. Local search for satisfiability (SAT) problem. Trans. Systems, Man, and Cybernetics, 1993, 23(4): 1108–1129.Google Scholar
  19. [19]
    Selman B, Kautz H A, Cohen B. Noise strategies for improving local search. In Proc. the 12th National Conference on Artificial Intelligence, July 31-August 4, 1994, pp.337-343.Google Scholar
  20. [20]
    Zhao C, Zhou H, Zheng Z, Xu K. A message-passing approach to random constraint satisfaction problems with growing domains. Journal of Statistical Mechanics: Theory and Experiment, 2011, P02019.Google Scholar
  21. [21]
    Zhao C, Zhang P, Zheng Z, Xu K. Analytical and belief-propagation studies of random constraint satisfaction problems with growing domains. Physical Review E, 2012, 85(1/2): 016106.CrossRefGoogle Scholar
  22. [22]
    Selman B, Levesque H, Mitchell D. A new method for solving hard satisfiability problems. In Proc. the 10th National Conference on Artificial Intelligence, July 1992, pp.440-446.Google Scholar
  23. [23]
    Zhang L, Madigan C, Moskewicz M et al. Efficient conflict driven learning in a Boolean satisfiability solver. In Proc. Int. Conf. Computer-Aided Design, Nov. 2001, pp.279-285.Google Scholar
  24. [24]
    Goldberg E, Novikov Y. BerkMin: A fast and robust SATsolver. In Proc. Design Automation and Test in Europe, March 2002, pp.142-149.Google Scholar
  25. [25]
    Eén N, Sörensson N. Translating pseudo-Boolean constraints into SAT. Journal on Satisfiability, Boolean Modeling and Computation, 2006, 2(1/4): 1–26.zbMATHGoogle Scholar
  26. [26]
    Pipatsrisawat K, Darwiche A. RSat 1.03: SAT solver description. Technical Report D-152, Automated Reasoning Group, Computer Science Department, UCLA, 2006.Google Scholar
  27. [27]
    Xu K, Li W. Exact phase transitions in random constraint satisfaction problems. Journal of Artificial Intelligence Research, 2000, 12: 93–103.MathSciNetzbMATHGoogle Scholar
  28. [28]
    Franco J, Paull M. Probabilistic analysis of the Davis Putnam procedure for solving the satisfiability problem. Discrete Applied Mathematics, 1983, 5(1): 77–87.MathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    Xu L, Hutter F, Hoos H H et al. SATzilla: Portfolio-based algorithm selection for SAT. Journal of Artificial Intelligence Research, 2008, 32(1): 565–606.zbMATHGoogle Scholar
  30. [30]
    Xu K, Li W. Many hard examples in exact phase transitions. Theoretical Computer Science, 2006, 355(3): 291–302.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    Xu K, Boussemart F, Hemery F, Lecoutre C. Random constraint satisfaction: Easy generation of hard (satisfiable) instances. Artificial Intelligence, 2007, 171(8/9): 514–534.MathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    Jiang W, Liu T, Ren T, Xu K. Two hardness results on feedback vertex sets. In Lecture Notes in Computer Science 6681, Atallah M, Li X, Zhu B (eds.), Springer, 2011, pp.233-243.Google Scholar
  33. [33]
    Liu T, Lin X, Wang C, Su K, Xu K. Large hinge width on sparse random hypergraphs. In Proc. the 22nd Int. Joint Conf. Artificial Intelligence, July 2011, pp.611-616.Google Scholar
  34. [34]
    Wang C, Liu T, Cui P, Xu K. A note on treewidth in random graphs. In Lecture Notes in Computer Science 6831, Wang W, Zhu X, Du D (eds.), Springer-Verlag, 2011, pp.491-499.Google Scholar
  35. [35]
    Zhang L. SAT-solving: From Davis-Putnam to Zchaff and beyond, 2003.
  36. [36]
    Nieuwenhuis R, Oliveras A, Tinelli C. Solving SAT and SAT modulo theories: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal of the ACM, 2006, 53(6): 937–977.MathSciNetCrossRefGoogle Scholar
  37. [37]
    Pullan W, Hoos H H. Dynamic local search for the maximum clique problem. Journal of Artificial Intelligence Research, 2006, 25: 159–185.zbMATHGoogle Scholar
  38. [38]
    Cai S, Su K, Sattar A. Local search with edge weighting and configuration checking heuristics for minimum vertex cover. Artificial Intelligence, 2011, 175: 1672–1696.MathSciNetzbMATHCrossRefGoogle Scholar
  39. [39]
    Cai S, Su K, Chen Q. EWLS: A new local search for minimum vertex cover. In Proc. the 24th AAAI Conference on Artificial Intelligence, July 2010, pp.45-50.Google Scholar
  40. [40]
    Richter C G S, Helmert M. A stochastic local search approach to vertex cover. In Proc. the 30th Annual German Conference on Artificial Intelligence, Sept. 2007, pp.412-426.Google Scholar

Copyright information

© Springer Science+Business Media New York & Science Press, China 2013

Authors and Affiliations

  • Wen-Sheng Guo
    • 1
  • Guo-Wu Yang
    • 1
  • William N. N. Hung
    • 2
  • Xiaoyu Song
    • 3
  1. 1.School of Computer Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu611731China
  2. 2.Synopsys Inc., Mountain ViewCaliforniaU.S.A.
  3. 3.Department of Electrical and Computer EngineeringPortland State UniversityPortland97207U.S.A.

Personalised recommendations