Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Issues in the Reconstruction of Gene Order Evolution

Abstract

As genomes evolve over hundreds of millions years, the chromosomes become rearranged, with segments of some chromosomes inverted, while other chromosomes reciprocally exchange chunks from their ends. These rearrangements lead to the scrambling of the elements of one genome with respect to another descended from a common ancestor. Multidisciplinary work undertakes to mathematically model these processes and to develop statistical analyses and mathematical algorithms to understand the scrambling in the chromosomes of two or more related genomes. A major focus is the reconstruction of the gene order of the ancestral genomes.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Venter J C, Adams M D, Myers E W, Li PW, Mural R J, Sutton G G et al. The sequence of the human genome. Science, 2001, 291(5507): 1304-1351.

  2. [2]

    Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature, 2002, 420(6915): 520-562.

  3. [3]

    Sankoff D, Leduc G, Antoine N, Paquin B, Lang B F, Cedergren R. Gene order comparisons for phylogenetic inference: Evolution of the mitochondrial genome. Proc. the National Academy of Sciences USA, 1992, 89(14): 6575-6579.

  4. [4]

    Sankoff D. Edit distance for genome comparison based on nonlocal operations. In Proc. the Third Annual Symposium on Combinatorial Pattern Matching (CPM1992), Tucson, USA, April 29-May 1, 1992, pp.121-135.

  5. [5]

    Cosner M E, Jansen R K, Moret B M E, Raubeson L A, Wang L-S, Warnow T, Wyman S. An Empirical Comparison of Phylogenetic Methods on Chloroplast Gene Order Data in Campanulaceae. Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment, and the Evolution of Gene Families, Sankoff D, Nadeau J (eds.), Dordrecht: Kluwer Academic Publishers, 2000, pp.99-121.

  6. [6]

    Ajana Y, Lefebvre J-F, Tillier E R M, El-Mabrouk N. Exploring the set of all minimal sequences of reversals — An application to test the replication-directed reversal hypothesis. In Proc. the Second International Workshop on Algorithms in Bioinformatics (WABI 2002), Rome, Italy, Sept. 17-21, 2002, pp.300-315.

  7. [7]

    Hannenhalli S, Pevzner P A. Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals. Journal of the ACM, 1999, 46(1): 1-27.

  8. [8]

    Caprara A. Sorting permutations by reversals and Eulerian cycle decompositions. SIAM Journal on Discrete Mathematics, 1999, 12(1): 91-110.

  9. [9]

    Watterson G A, Ewens W J, Hall T E, Morgan A. The chromosome inversion problem. Journal of Theoretical Biology, 1982, 99(1): 1-7.

  10. [10]

    Sankoff D. Mechanisms of genome evolution: Models and inference. Bulletin of the International Statistical Institute, 1989, 47(3): 461-475.

  11. [11]

    Sturtevant A H, Novitski E. The homologies of the chromosome elements in the genus Drosophila. Genetics, 1941, 26(5): 517-541.

  12. [12]

    Hannenhalli S, Pevzner P A. Transforming men into mice (polynomial algorithm for genomic distance problem). In Proc. the Thirty-Sixth Annual Symposium on Foundations of Computer Science (FOCS 1995), Milwaukee, USA, Oct. 23-25, 1995, pp.581-592.

  13. [13]

    Tesler G. Efficient algorithms for multichromosomal genome rearrangements. Journal of Computer and System Sciences, 2002, 65(3): 587-609.

  14. [14]

    Sankoff D, Blanchette M. Multiple genome rearrangement and breakpoint phylogeny. Journal of Computational Biology, 1998, 5(3): 555-570.

  15. [15]

    El-Mabrouk N, Bryant D, Sankoff D. Reconstructing the pre-doubling genome. In Proc. the Third Annual International Conference on Computational Molecular Biology (RECOMB), Lyon, France, April 11-14, 1999, pp.154-163.

  16. [16]

    El-Mabrouk N, Sankoff D. The reconstruction of doubled genomes. SIAM Journal on Computing, 2003, 32(2): 754-792.

  17. [17]

    Pevzner P, Tesler G. Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proceedings of the National Academy of Sciences USA, 2003, 100(13): 7672-7677.

  18. [18]

    Kent W J, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution’s cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes. Proceedings of the National Academy of Sciences USA, 2003, 100(20): 11484-11489.

  19. [19]

    Kent W J, Sugnet C W, Furey T S, Roskin K M, Pringle T H, Zahler A M, Haussler A D. The Human genome browser at UCSC. Genome Research, 2002, 12(6): 996-1006.

  20. [20]

    Mazowita M, Haque L, Sankoff D. Stability of rearrangement measures in the comparison of genome sequences. Journal of Computational Biology, 2006, 13(2): 554-566.

  21. [21]

    Sinha A U, Meller J. Sensitivity analysis for reversal distance and breakpoint reuse in genome rearrangements. Pacific Symposium on Biocomputing, 2008, 13: 37-38.

  22. [22]

    Jiang T. Some algorithmic challenges in genome-wide ortholog assignment. J. Comput. Sci. & Technol., 2010, 25(1): 42-52.

  23. [23]

    Tannier E, Zheng C, Sankoff D. Multichromosomal median and halving problems under different genomic distances. BMC Bioinformatics, 2009, 10: 120.

  24. [24]

    Fertin G, Labarre A, Rusu I, Tannier E, Vialette S. Combinatorics of Genome Rearrangements. Cambridge, Massachusetts: The MIT Press, 2009.

  25. [25]

    Yancopoulos S, Attie O, Friedberg R. Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics, 2005, 21(16): 3340-3346,

  26. [26]

    Bergeron A, Mixtacki J, Stoye J. A unifying view of genome rearrangements. In Proc. the Sixth International Workshop on Algorithms in Bioinformatics (WABI 2000), Zurich, Switzerland, Sept. 11-13, 2006, pp.163-173.

  27. [27]

    Dalevi D, Eriksen N. Expected gene-order distances and model selection in bacteria. Bioinformatics, 2008, 24(11): 1332-1338.

  28. [28]

    Eriksen N, Hultman A. Estimating the expected reversal distance after a fixed number of reversals. Advances in Applied Mathematics, 2004, 32(3): 439-453.

  29. [29]

    Wang L-S, Warnow T. Distance-Based Genome Rearrangement Phylogeny. J. Mol. Wvol., 2006, 63(4): 473-483

  30. [30]

    Muñoz A, Sankoff D. Rearrangement phylogeny of genomes in contig form. In Proc. the Fifth International Symposium on Bioinformatics Research and Applications (ISBRA2009), Fort Lauderdale, USA, May 13-16, 2009, pp.160-172.

  31. [31]

    Adam Z, Turmel M, Lemieux C, Sankoff D. Common intervals and symmetric difference in a model-free phylogenomics, with an application to streptophyte evolution. Journal of Computational Biology, 2007, 14(4): 436-445.

  32. [32]

    Zhu Q, Adam Z, Choi V, Sankoff D. Generalized gene adjacencies, graph bandwidth, and clusters in yeast evolution. Transactions on Computational Biology and Bioinformatics, 2009, 6(2): 213-220.

  33. [33]

    Tannier E. Yeast ancestral genome reconstructions: The possibilities of computational methods. In Proc. the 7th Ann. RECOMB Satellite Workshop on Comparative Genomics (RECOMB CG2009), Budapest, Hungary, Sept. 27-29, 2009, pp.1-12.

  34. [34]

    Sankoff D, Blanchette M. The median problem for breakpoints in comparative genomics. In Proc. the Third Annual International Conference on Computing and Combinatorics (COCOON1997), Shanghai, China, Aug. 20-22, 1997, pp.251-263.

  35. [35]

    Bader D, Moret B M. GRAPPA runs in record time. HPCwire. November 23, 2000, 9(47).

  36. [36]

    Siepel A C. Exact algorithms for the reversal median problem [Master’s Thesis]. University of New Mexico, 2001.

  37. [37]

    Caprara A. On the practical solution of the reversal median problem. In Proc. the First International Workshop on Algorithms in Bioinformatics (WABI 2001), Aarhus, Denmark, Aug. 28-31, 2001, pp.238-251.

  38. [38]

    Bourque G, Pevzner P A. Genome-scale evolution: Reconstructing gene orders in the ancestral species. Genome Research, 2002, 12(1): 26-36.

  39. [39]

    Xu A W. A fast and exact algorithm for the median of three problem — A graph decomposition approach. In Proc. Sixth Annual RECOMB Satellite Workshop Comparative Genomics (RECOMB CG2008), Paris, France, Oct. 13-15, 2008, pp.184-197.

  40. [40]

    Xu A W, Sankoff D. Decompositions of multiple breakpoint graphs and rapid exact solutions to the median problem. In Proc. the Eighth International Workshop on Algorithms in Bioinformatics (WABI 2008), Karlsruhe, Germany, Sept. 15-17, 2008, pp.25-37.

  41. [41]

    Adam Z, Sankoff D. A statistically fair comparison of ancestral genome reconstructions, based on breakpoint and rearrangement distances. In Proc. the Seventh Annual RECOMB Satellite Workshop on Comparative Genomics (RECOMB CG2009), Budapest, Hungary, Sept. 16-18, 2009, pp.193-204.

  42. [42]

    Adam Z, Sankoff D. The ABCs of MGR with DCJ. Evolutionary Bioinformatics Online, 2008, 4: 69-74.

  43. [43]

    Warren R, Sankoff D. Genome halving with double cut and join. Journal of Bioinformatics and Computational Biology, 2009, 7(2): 357-371.

  44. [44]

    Mixtacki J. Genome halving under DCJ revisited. In Proc. the Fourteenth Annual Conference on Computing and Combinatorics (COCOON), Dalian, China, June 27-29, 2008, pp.276-286.

  45. [45]

    Blin G, Chauve C, Fertin G, Rizzi R, Vialette S. Comparing genomes with duplications: A computational complexity point of view. Transactions on Computational Biology and Bioinformatics, 2007, 4(4): 523-534.

  46. [46]

    Zheng C, Zhu Q, Sankoff D. Genome halving with an outgroup. Evolutionary Bioinformatics, 2006, 2(13): 319-326.

  47. [47]

    Sankoff D, Zheng C, Zhu Q. Polyploids, genome halving and phylogeny. Bioinformatics, 2007, 23(13): i433-i439.

  48. [48]

    Zheng C, Zhu Q, Adam Z, Sankoff D. Guided genome halving: Hardness, heuristics and the history of the Hemiascomycetes. Bioinformatics, 2008, 24(13): i96-i104.

  49. [49]

    Sankoff D, Zheng C, Wall P K, dePamphilis C, Leebens-Mack J, Albert V A. Towards improved reconstruction of ancestral gene order in angiosperm phylogeny. Journal of Computational Biology, 2009, 16(10): 1353-1367.

  50. [50]

    Warren R, Sankoff D. Genome aliquoting with double cut and join. BMC Bioinformatics, 2009, 10: S2.

  51. [51]

    Zheng C, Lenert A, Sankoff D. Reversal distance for partially ordered genomes. Bioinformatics, 2005, 21(Suppl. 1): i502-i508.

  52. [52]

    Zheng C, Sankoff D. Genome rearrangements with partially ordered chromosomes. Journal of Combinatorial Optimization, 2006, 11(2): 133-144.

  53. [53]

    Blin G, Blais E, Hermelin D, Guillon P, Blanchette M, El-Mabrouk N. Gene maps linearization using genomic rearrangement distances. Journal of Computational Biology, 2007, 14(4): 394-407.

  54. [54]

    Chen X, Cui Y. An approximation algorithm for the minimum breakpoint linearization problem. Transactions on Computational Biology and Bioinformatics, 2009, 6(3): 401-409.

  55. [55]

    Gaul E, Blanchette M. Ordering partially assembled genomes using gene arrangements. In Proc. the Fourth Annual Workshop on Comparative Genomics (RECOMB CG2006), Montreal, Canada, Sept. 24-26, 2006, pp.113-128.

  56. [56]

    Bhutkar A, Russo S, Smith T F, Gelbart W M. Techniques for multi-genome synteny analysis to overcome assembly limitations. Genome Informatics, 2006, 17(2): 152-161.

  57. [57]

    Zheng C, Zhu Q, Sankoff D. Removing noise and ambiguities from comparative maps in rearrangement analysis. Transactions on Computational Biology and Bioinformatics, 2007, 4(4): 515-522.

  58. [58]

    Choi V, Zheng C, Zhu Q, Sankoff D. Algorithms for the extraction of synteny blocks from comparative maps. In Proc. the Seventh International Workshop on Algorithms in Bioinformatics (WABI 2007), Philadelphia, USA, Sept. 8-9, 2007, pp.277-288.

  59. [59]

    Ostergard P R J. A new algorithm for the maximum-weight clique problem. Nordic Journal of Computing, 2001, 8(4): 424-436.

  60. [60]

    Kumlander D. A new exact algorithm for the maximumweight clique problem based on a heuristic vertex-coloring and a backtrack search. In The Fourth European Congress of Mathematics, Stockholm, Sweden, June 27-July 2, 2004, MS. and Poster.

  61. [61]

    Bulteau L, Fertin G, Rusu I. Maximal strip recovery problem with gaps: Hardness and approximation algorithms. In Proc. the 20th Int. Symp. Algorithms and Computation (ISAAC 2009), Hawaii, USA, Dec. 16-18, 2009, pp.710-719.

  62. [62]

    Chen Z, Fu B, Jiang M, Zhu B. On recovering syntenic blocks from comparative maps. In Proc. the Second Annual Int. Conf. Combinatorial Optimization and Applications (COCOA2008). St. John’s, Canada, Aug. 21-24, 2008, pp.319-327.

  63. [63]

    Jiang M. Inapproximability of maximal strip recovery. In Proc. the 20th Int. Symp. Algorithms and Computation (ISAAC 2009), Hawaii, USA, Dec. 16-18, 2009, pp.616-625.

  64. [64]

    Wang L, Zhu B. On the tractability of maximal strip recovery. In Proc. the Sixth Annual Conf. Theory and Applications of Models of Computation (TAMC2009), Changsha, China, May 18-22, 2009, pp.400-409.

  65. [65]

    Hoberman R, Durand D. The incompatible desiderata of gene cluster properties. In Proc. the Fifth Annual Workshop on Comparative Genomics (RECOMB CG2005), Dublin, Ireland, Sept. 18-20, 2005, pp.73-87.

  66. [66]

    Sankoff D, Haque L. Power boosts for cluster tests. In Proc. the Fifth Annual Workshop on Comparative Genomics (RECOMB CG), Dublin, Ireland, Sept. 18-20, 2005. pp.121-130.

  67. [67]

    Xu X, Sankoff D. Tests for gene clusters satisfying the generalized adjacency criterion. In Proc. the Third Brazilian Symposium on Bioinformatics, Advances in Bioinformatics and Computational Biology (BSB 2008), Santo Andre, Brazil, Aug. 28-30, 2008, pp.152-160.

  68. [68]

    Yang Z, Sankoff D. Natural parameter values for generalized gene adjacency. In Proc. the Seventh Annual RECOMB Satellite Workshop on Comparative Genomics (RECOMB CG), San Diego, USA, Sept. 16-18, 2009, pp.13-23.

  69. [69]

    Hoberman R, Sankoff D, Durand D. The statistical analysis of spatially clustered genes under the maximum gap criterion. Journal of Computational Biology, 2005, 12(8): 1083-1102.

  70. [70]

    Erdös P, Rényi A. On random graphs. Publicationes Mathematicae, 1959, 6: 290-297.

  71. [71]

    Erdös P, Rényi A. On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 1960, 5: 17-61.

  72. [72]

    Erdös P, Rényi A. On the strength of connectedness of a random graph. Acta Mathematica Scientia Hungary, 1961, 12: 261-267.

  73. [73]

    D’Souza R, Achlioptas D, Spencer J. Explosive percolation in random networks. Science, 2009, 323(5920): 1453-1455.

Download references

Author information

Correspondence to David Sankoff.

Additional information

This work was supported in part by grants and fellowships from the Natural Science and Engineering Council of Canada (NSERC).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sankoff, D., Zheng, C., Muñoz, A. et al. Issues in the Reconstruction of Gene Order Evolution. J. Comput. Sci. Technol. 25, 10–25 (2010). https://doi.org/10.1007/s11390-010-9301-9

Download citation

Keywords

  • chromosome rearrangement
  • comparative genomics
  • gene clusters
  • phylogenomics