Journal of Computer Science and Technology

, Volume 24, Issue 3, pp 495–504 | Cite as

An Improved Markov Model for IEEE 802.15.4 Slotted CSMA/CA Mechanism

  • Hao WenEmail author
  • Chuang Lin
  • Zhi-Jia Chen
  • Hao Yin
  • Tao He
  • Eryk Dutkiewicz
Regular Paper


IEEE 802.15.4 protocol is proposed to meet the low latency and energy consumption needs in low-rate wireless applications, however, few analytical models are tractable enough for comprehensive evaluation of the protocol. To evaluate the IEEE 802.15.4 slotted CSMA/CA channel access mechanism in this paper, we propose a practical and accurate discrete Markov chain model, which can dynamically represent different network loads. By computing the steady-state distribution probability of the Markov chain, we obtain an evaluation formula for throughput, energy consumption, and access latency. Then we further analyze the parameters that influence performance including packet arrival rate, initial backoff exponent and maximum backoff number. Finally, NS2 simulator has been used to evaluate the performance of the 802.15.4 CSMA/CA mechanism under different scenarios and to validate the accuracy of the proposed model.


IEEE 802.15.4 Markov model CSMA/CA mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11390_2009_9240_MOESM1_ESM.pdf (114 kb)
(PDF 76.1 kb).


  1. 1]
    Ren F, Huang H, Lin C. Wireless sensor networks. Journal of Software, 2003, 14(7): 1282–1291.zbMATHGoogle Scholar
  2. [2]
    Akyildiz F I, Su W, Sankarasubramaniam Y, Cayirci E. Wireless sensor networks: A survey. Computer Networks, Elsevier, 2002, 38(4): 393–422.CrossRefGoogle Scholar
  3. [3]
    Bianchi G, Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 2000, 18(3): 535–547.CrossRefGoogle Scholar
  4. [4]
    Wang C, Li B, Li B, Sohraby K. An effective collision resolution mechanism for wireless LAN. In Proc. IEEE ICC-NMC’03, Shanghai, China, October 20–23, 2003, pp.18–25.Google Scholar
  5. [5]
    Wang X, Min G, Mellor E J. Performance modeling of IEEE 802.11 DCF using equilibrium point analysis. In Proc. IEEE 20th AINA, Vienna, Austria, April 18–20, 2006, pp.281–288.Google Scholar
  6. [6]
    IEEE Standard 802.15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LRWPANs). New York: IEEE Press, 2003.Google Scholar
  7. [7]
    Zheng J, Lee J M. A comprehensive performance study of IEEE 802.15.4. Sensor Network Operations, IEEE Press, 2006, pp.218–237.Google Scholar
  8. [8]
    Lu G, Krishnamachari B, Raghavendra S C. Performance evaluation of the IEEE 802.15.4 MAC for low-rate wireless networks. In Proc. IPCCC04, Phoenix, USA, April 15–17, 2004, pp.701–706.Google Scholar
  9. [9]
    Lee S J. An experiment on performance study of IEEE 802.15.4 wireless networks. In Proc. IEEE Int. Conf. Emerging Technologies and Factory Automation, Catania, Italy, September 19–22, 2005, pp.451–458.Google Scholar
  10. [10]
    Chen F, Wang N, German R, Dressler F. Performance evaluation of IEEE 802.15.4 LR-WPAN for industrial applications. In Proc. WONS 2008, Garmisch — Partenkirchen, Germany, January 23–25, 2008, pp.89–96.Google Scholar
  11. [11]
    Park T R, Kim T H, Choi J Y, Choi S, Kwon W H. Throughput and energy consumption analysis of IEEE 802.15.4 slotted CSMA/CA. IEE Electronics Letters, 2005, 41(18): 1017–1019.CrossRefGoogle Scholar
  12. [12]
    Zhang Y, Xu P, Zhang Z, Bi G. Comments on throughput analysis of IEEE 802.15.4 slotted CSMA/CA considering timeout period. IEE Electronics Letters, 2006, 42(19): 1127–1128.CrossRefGoogle Scholar
  13. [13]
    Mišic J, Shafi S, Mišic B V. Performance of a beacon enabled IEEE 802.15.4 cluster with downlink and uplink traffic. IEEE Trans. Parallel and Distri. Systems, 2006, 17(4): 361–376.CrossRefGoogle Scholar
  14. [14]
    Pollin S et al. Performance analysis of slotted carrier sense IEEE 802.15.4 medium access layer. In Proc. IEEE GLOBECOM 2006, San Francisco, USA, Nov. 27–Dec. 1, 2006, pp.1–6.Google Scholar
  15. [15]
    Ramachandran I, Das K A, Roy S. Analysis of the contention access period of IEEE 802.15.4 MAC. ACM Trans. Sensor Networks, 2007, 3(1): 1–29.CrossRefGoogle Scholar
  16. [16]
    Ling X, Cheng Y, Mark W J, Shen X. A general analytical model for the IEEE 802.15.4 contention access period. In Proc. WCNC’07, Hong Kong, China, March 11–15, 2007, pp.316–321.Google Scholar
  17. [17]
    Amini F, Khan M, Mišic J et al. Performance of IEEE 802.15.4 clusters with power management and key exchange. Journal of Computer Science and Technology, 2008, 23(3): 377–388.CrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Hao Wen
    • 1
    Email author
  • Chuang Lin
    • 1
  • Zhi-Jia Chen
    • 1
  • Hao Yin
    • 1
  • Tao He
    • 1
  • Eryk Dutkiewicz
    • 2
  1. 1.Department of Computer ScienceTsinghua UniversityBeijingChina
  2. 2.Department of Physics and EngineeringMacquarie UniversitySydneyAustralia

Personalised recommendations