Journal of Computer Science and Technology

, Volume 24, Issue 1, pp 6–18 | Cite as

Gradient Domain Mesh Deformation — A Survey

  • Wei-Wei XuEmail author
  • Kun Zhou


This survey reviews the recent development of gradient domain mesh deformation method. Different to other deformation methods, the gradient domain deformation method is a surface-based, variational optimization method. It directly encodes the geometric details in differential coordinates, which are also called Laplacian coordinates in literature. By preserving the Laplacian coordinates, the mesh details can be well preserved during deformation. Due to the locality of the Laplacian coordinates, the variational optimization problem can be casted into a sparse linear system. Fast sparse linear solver can be adopted to generate deformation result interactively, or even in real-time. The nonlinear nature of gradient domain mesh deformation leads to the development of two categories of deformation methods: linearization methods and nonlinear optimization methods. Basically, the linearization methods only need to solve the linear least-squares system once. They are fast, easy to understand and control, while the deformation result might be suboptimal. Nonlinear optimization methods can reach optimal solution of deformation energy function by iterative updating. Since the computation of nonlinear methods is expensive, reduced deformable models should be adopted to achieve interactive performance. The nonlinear optimization methods avoid the user burden to input transformation at deformation handles, and they can be extended to incorporate various nonlinear constraints, like volume constraint, skeleton constraint, and so on. We review representative methods and related approaches of each category comparatively and hope to help the user understand the motivation behind the algorithms. Finally, we discuss the relation between physical simulation and gradient domain mesh deformation to reveal why it can achieve physically plausible deformation result.


discrete differential geometry gradient domain mesh deformation nonlinear optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11390_2009_9209_MOESM1_ESM.pdf (77 kb)
(PDF 77.3 kb)


  1. [1]
    Barr A H. Global and local deformations of solid primitives. In Proc. the 11th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’84), New York, NY, USA, July 23–27, 1984, pp.21–30.Google Scholar
  2. [2]
    Botsch M, Kobbelt L. An intuitive framework for real-time freeform modeling. ACM Trans. Graph., 2004, 23(3): 630–634.CrossRefGoogle Scholar
  3. [3]
    Botsch M, Kobbelt L. Real-time shape editing using radial basis functions. Computer Graphics Forum, 2005, 24(3): 611–621.CrossRefGoogle Scholar
  4. [4]
    Lewis J P, Cordner M, Fong N. Pose space deformation: A unified approach to shape interpolation and skeleton-driven deformation. In Proc. SIGGRAPH’00, New Orleans, USA, July 23–28, 2000, pp.165–172.Google Scholar
  5. [5]
    Peng Q, Jin X, Feng J. Arc-length-based axial deformation and length preserved animation. In Proc. IEEE Symposium on Computer Animation, Geneva, Switzerland, 1997, pp.86–92.Google Scholar
  6. [6]
    Sederberg T W, Parry S R. Free-form deformation of solid geometric models. Computer Graphics, 1986, 20(4): 151–160.CrossRefGoogle Scholar
  7. [7]
    Singh K, Fiume E. Wires: A geometric deformation technique. In Proc. SIGGRAPH’98, Orlando, USA, July 19–24, 1998, pp.405–414.Google Scholar
  8. [8]
    Terzopoulos D, Platt J, Barr A, Fleischer K. Elastically deformable models. In Proc. SIGGRAPH’87, Anaheim, USA, July 27–31, 1987, pp.205–214.Google Scholar
  9. [9]
    Botsch M, Sorkine O. On linear variational surface deformation methods. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(1): 213–230.CrossRefGoogle Scholar
  10. [10]
    Sorkine O. Differential representations for mesh processing. Computer Graphics Forum, 2006, 25(4): 789–807.CrossRefGoogle Scholar
  11. [11]
    Strauss W A. Partial Differential Equations: An Introduction. John Wiley & Sons Inc., Hoboken, NJ, USA, 1992.zbMATHGoogle Scholar
  12. [12]
    Desbrun M, Meyer M, Schröder P, Barr A H. Implicit fairing of irregular meshes using diffusion and curvature flow. In Proc. SIGGRAPH’99, Los Angeles, CA, USA, August 8–13, 1999, pp.317–324.Google Scholar
  13. [13]
    Meyer M, Desbrun M, Schroder P, Barr A H. Discrete differential-geometry operators for triangulated 2-manifolds. In Proc. VisMath’02, Berlin, Germany, May 22–25, 2002, pp.35–57.Google Scholar
  14. [14]
    Tong Y, Lombeyda S, Hirani A N, Desbrun M. Discrete multiscale vector field decomposition. ACM Trans. Graph., 2003, 22(3): 445–452.CrossRefGoogle Scholar
  15. [15]
    Zayer R, Ross C, Karni Z, Seidel H-P. Harmonic guidance for surface deformation. Computer Graphics Forum, 2005, 24(3): 601–609.CrossRefGoogle Scholar
  16. [16]
    Lipman Y, Sorkine O, Levin D, Cohen-Or D. Linear rotation invariant coordinates for meshes. ACM Transaction Graphics, 2005, 24(3): 479–487.CrossRefGoogle Scholar
  17. [17]
    Sorkine O, Lipman Y, Cohen-Or D, Alexa M, Rossl C, Seidel H P. Laplacian surface editing. In Proc. the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, Nice, France, August 8–12, 2004, pp.179–188.Google Scholar
  18. [18]
    Yu Y, Zhou K, Xu D, Shi X, Bao H, Guo B, Shum H-Y. Mesh editing with poisson-based gradient field manipulation. ACM Transaction on Graphics, 2004, 23(3): 644–651.CrossRefGoogle Scholar
  19. [19]
    Perez P, Gangnet M, Blake A. Poisson image editing. ACM Transactions on Graphics (TOG), 2003, 22(3): 313–318.CrossRefGoogle Scholar
  20. [20]
    Popa T, Julius D, Sheffer A. Material-aware mesh deformations. In Proc. the IEEE International Conference on Shape Modeling and Applications 2006 (SMI’06), Matsushima Japan, June 14–16, 2006, pp.22–30.Google Scholar
  21. [21]
    Sumner R W, Popovic J. Deformation transfer for triangle meshes. ACM Transactions on Graphics (TOG), 2004, 23(3): 399–405.CrossRefGoogle Scholar
  22. [22]
    Botsch M, Sumner R, Pauly M, Gross M. Deformation transfer for detail-preserving surface editing. In Proc. Vision, Modeling, and Visualization 2006, Aachen, Germany, November 22–24, 2006, pp.357–364.Google Scholar
  23. [23]
    Xu D, Zhang H, Wang Q, Bao H. Poisson shape interpolation. Graphics Model, 2006, 68(3): 268–281.zbMATHCrossRefGoogle Scholar
  24. [24]
    Alexa M. local control of mesh morphing. In Proc. the IEEE International Conference on Shape Modeling and Applications 2001 (SMI’01), Genova, Italy, May 7–11, 2001, pp.209–215.Google Scholar
  25. [25]
    Lipman Y, Sorkine O, Cohen-Or D, Levin D, Rössl C, Seidel H P. Differential coordinates for interactive mesh editing. In Proc. Shape Modeling International, Genova, Italy, June 7–9, 2004, pp.181–190.Google Scholar
  26. [26]
    Fu H, Au O K-C, Tai C-L. Effective derivation of similarity transformations for implicit Laplacian mesh editing. Computer Graphics Forum, 2007, 26(1): 34–45.CrossRefGoogle Scholar
  27. [27]
    Igarashi T, Moscovich T, Hughes J F. As-rigid-as-possible shape manipulation. ACM Transaction On Graphics, 2005, 24(3): 1134–1141.CrossRefGoogle Scholar
  28. [28]
    Zhou K, Huang J, Snyder J, Liu X, Bao H, Guo B, Shum H-Y. Large mesh deformation using the volumetric graph Laplacian. ACM Transaction on Graphics, 2005, 24(3): 496–503.CrossRefGoogle Scholar
  29. [29]
    Nealen A, Sorkine O, Alexa M, Cohen-Or D. A sketch-based interface for detail preserving mesh editing. ACM Transactions on Graphics (TOG), 2005, 24(3): 1142–1147.CrossRefGoogle Scholar
  30. [30]
    Lipman Y, Cohen-Or D, Gal R, Levin D. Volume and shape preservation via moving frame manipulation. ACM Transaction on Graphics, 2007, 26(1): 5.CrossRefGoogle Scholar
  31. [31]
    Shi L, Yu Y, Bell N, Feng W-W. A fast multigrid algorithm for mesh deformation. ACM Transaction on Graphics, 2006, 25(3): 1108–1117.CrossRefGoogle Scholar
  32. [32]
    Huang J, Shi X, Liu X, Zhou K, Wei L, Teng S, Bao H, Guo B, Shum H-Y. Subspace gradient domain mesh deformation. ACM Trans. Graphics, 2006, 25(3): 1126–1134.CrossRefGoogle Scholar
  33. [33]
    Steihug T. An inexact Gauss-Newton approach to mildly nonlinear problems. Technical Report, Department of Mathematics, University of Linkoping, 1995.Google Scholar
  34. [34]
    Au O K-C, Tai C-L, Liu L, Fu H. Dual Laplacian editing for meshes. IEEE Transaction on Visualization and Computer Graphics, 2006, 12(3): 386–395.CrossRefGoogle Scholar
  35. [35]
    Au O K-C, Fu H, Tai C-L, Cohen-Or D. Handle-aware isolines for scalable shape editing. ACM Transactions on Graphics, 2007, 26(3): 83.CrossRefGoogle Scholar
  36. [36]
    Floater M S. Mean value coordinates. Comp. Aided Geom. Design, 2003, 20(1): 19–27.zbMATHCrossRefMathSciNetGoogle Scholar
  37. [37]
    Ju T, Schaefer S, Warren J. Mean value coordinates for closed triangular meshes. ACM Transactions on Graphics, 2005, 24(3): 561–566.CrossRefGoogle Scholar
  38. [38]
    Weng Y, Xu W, Wu Y, Zhou K, Guo B. 2d shape deformation using nonlinear least squares optimization. The Visual Computer, 2006, 22(9–11): 653–660.CrossRefGoogle Scholar
  39. [39]
    Nealen A, Igarashi T, Sorkine O, Alexa M. Fibermesh: Designing freeform surfaces with 3d curves. ACM Transactions on Graphics, 2007, 26(3): 41.CrossRefGoogle Scholar
  40. [40]
    Shoemake K, Duff T. Matrix animation and polar decomposition. In Proc. Graphics Interface, Canada, May 11–15, 1992, pp.258–264.Google Scholar
  41. [41]
    Zhou K, Huang X, Xu W, Guo B, Shum H-Y. Direct manipulation of subdivision surfaces on GPUs. ACM Transactions on Graphics, 2007, 26(3): 91.CrossRefGoogle Scholar
  42. [42]
    Shi X, Zhou K, Tong Y, Desbrun M, Bao H, Guo B. Mesh puppetry: Cascading optimization of mesh deformation with inverse kinematics. ACM Transactions on Graphics, 2007, 26(3): 81.CrossRefGoogle Scholar
  43. [43]
    Xu W, Zhou K, Yu Y, Tan Q, Peng Q, Guo B. Gradient domain editing of deforming mesh sequences. ACM Transactions on Graphics, 2007, 26(3): 84CrossRefGoogle Scholar
  44. [44]
    Sheffer A, Kraevoy V. Pyramid coordinates for morphing and deformation. In Proc. 3DPVT, Thessaloniki, Greece, Sept. 6–9, 2004, pp.68–75.Google Scholar
  45. [45]
    Sumner R W, Zwicker M, Gotsman C, Popovic J. Mesh-based inverse kinematics. ACM Transactions on Graphics, 2005, 24(3): 488–495.CrossRefGoogle Scholar
  46. [46]
    Der K G, Sumner R W, Popovic J. Inverse kinematics for reduced deformable models. ACM Transactions on Graphics, 2006, 25(3): 1174–1179.CrossRefGoogle Scholar
  47. [47]
    James D, Twigg C. Skinning mesh animations. ACM Transactions on Graphics, 2005, 24(3): 399–407.CrossRefGoogle Scholar
  48. [48]
    Botsch M, Pauly M, Gross M, Kobbelt L. Primo: Coupled prisms for intuitive surface modeling. In Proc. the Fourth Eurographics Symposium on Geometry Processing, Airela-Ville, Switzerland, June 26–28, 2006, pp.11–20.Google Scholar
  49. [49]
    Pottmann H, Leopoldseder S, Hofer M. Simultaneous registration of multiple views of a 3d object. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2002, pp.265–270.Google Scholar
  50. [50]
    Botsch M, Pauly M, Wicke M, Gross M. Adaptive space deformations based on rigid cells. Computer Graphics Forum, 2007, 26(3): 339–347.CrossRefGoogle Scholar
  51. [51]
    Sumner R W, Schmid J, Pauly M. Embedded deformation for shape manipulation. ACM Transactions on Graphics, 2007, 26(3): 80.CrossRefGoogle Scholar
  52. [52]
    Celniker G, Gossard D. Deformable curve and surface finiteelements for free-form shape design. In Proc. SIGGRAPH 91, Las Vegas, Nevada, USA, July 28–August 2, 1991, pp.257–266.Google Scholar
  53. [53]
    Welch W, Witkin A. Variational surface modeling. In Proc. SIGGRAPH’92, Chicago, Illinois, USA, July 26–31, 1992, pp.157–166.Google Scholar
  54. [54]
    Huang J, Shi X, Liu X, Zhou K, Guo B, Bao H. Geometrically based potential energy for simulating deformable objects. Visual Computer, 2006, 22(9): 740–748.CrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  1. 1.Microsoft Research AsiaBeijingChina
  2. 2.Department of Computer ScienceZhejiang UniversityHangzhouChina

Personalised recommendations