Advertisement

Journal of Computer Science and Technology

, Volume 21, Issue 5, pp 776–789 | Cite as

Some Issues in Quantum Information Theory

  • Run-Yao Duan
  • Zheng-Feng Ji
  • Yuan Feng
  • Ming-Sheng Ying
Theory

Abstract

Quantum information theory is a new interdisciplinary research field related to quantum mechanics, computer science, information theory, and applied mathematics. It provides completely new paradigms to do information processing tasks by employing the principles of quantum mechanics. In this review, we first survey some of the significant advances in quantum information theory in the last twenty years. We then focus mainly on two special subjects: discrimination of quantum objects and transformations between entanglements. More specifically, we first discuss discrimination of quantum states and quantum apparatus in both global and local settings. Secondly, we present systematical characterizations and equivalence relations of several interesting entanglement transformation phenomena, namely entanglement catalysis, multiple-copy entanglement transformation, and partial entanglement recovery.

Keywords

discrimination entanglement transformation quantum computing quantum information 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    William K Wootters, W H Zurek. A single quantum cannot be cloned. Nature, 1982, 299: 802–803.CrossRefGoogle Scholar
  2. [2]
    Dennis Dieks. Communication by EPR devices. Physics Letters A, 1982, 92: 271–272.CrossRefGoogle Scholar
  3. [3]
    Richard P Feynman. Simulating physics with computers. International Journal of Theoretical Physics, 1982, 21(6/7): 467–488.MathSciNetGoogle Scholar
  4. [4]
    Michael A Nielsen, Isaac L Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.Google Scholar
  5. [5]
    John Preskill. Lecture Notes for Physics 219/Computer Science 219: Quantum Computation, 1997–2004. Available online: http://www.theory.caltech.edu/people/preskill/ph229/
  6. [6]
    A Yu Kitaev, A H Shen, M N Vyalyi. Classical and Quantum Computation. American Mathematical Society, 2002.Google Scholar
  7. [7]
    David Deutsch. Quantum theory, the Church-Turing principle and the universal quantum computer. In Proc. the Royal Society of London A, 1985, 400: 97–117.Google Scholar
  8. [8]
    Alan M Turing. On computable numbers, with an application to the Entscheidungsproblem. In Proc. the London Mathematical Society, 1937, 42: 230–265.Google Scholar
  9. [9]
    David Deutsch. Quantum computational networks. In Proc. the Royal Society of London A, 1989, 425: 73.Google Scholar
  10. [10]
    Andrew Chi-Chih Yao. Quantum circuit complexity. In the 34th Annual IEEE Symposium on Foundations of Computer Science (FOCS), IEEE, New York, Nov. 1993, pp. 352–360.Google Scholar
  11. [11]
    Robert Raussendorf, Hans J Briegel. A one-way quantum computer. Physical Review Letters, 2001, 86(22): 5188–5191.CrossRefGoogle Scholar
  12. [12]
    Robert Raussendorf, Daniel E Browne, Hans J Briegel. Measurement-based quantum computation on cluster states. Physical Review A (Atomic, Molecular, and Optical Physics), 2003, 68(2): 022312,CrossRefGoogle Scholar
  13. [13]
    Hans J Briegel, Robert Raussendorf. Persistent entanglement in arrays of interacting particles. Physical Review Letters, 2001, 86(5): 910–913.CrossRefGoogle Scholar
  14. [14]
    Walther P, Resch K J, Rudolph T et al. Experimental one-way quantum computing. Nature, 2005, 434: 169–176.CrossRefGoogle Scholar
  15. [15]
    Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Michael Sipser. Quantum computation by adiabatic evolution. Available online: http://arxiv.org/abs/quant-ph/0001106.
  16. [16]
    Dorit Aharonov, Wim van Dam, Julia Kempe et al. Adiabatic quantum computation is equivalent to standard quantum computation. Available online: http://arxiv.org/abs/quant-ph/0405098.
  17. [17]
    Peter W Shor. Scheme for reducing decoherence in quantum computer memory. Physical Review A (Atomic, Molecular, and Optical Physics), 1995, 52(4): R2493–R2496.CrossRefGoogle Scholar
  18. [18]
    Steane A M. Error correcting codes in quantum theory. Physical Review Letters, 1996, 77(5): 793–797.zbMATHMathSciNetCrossRefGoogle Scholar
  19. [19]
    A R Calderbank, Peter W Shor. Good quantum error-correcting codes exist. Physical Review A (Atomic, Molecular, and Optical Physics), 1996, 54(2): 1098–1105.CrossRefGoogle Scholar
  20. [20]
    Steane A M. Multiple particle interference and quantum error correction. In Proc. the Royal Society of London A, 1996, 452: 2551–2577.Google Scholar
  21. [21]
    Gottesman D. Stabilizer codes and quantum error correction [Dissertation]. California Institute of Technology, 1997.Google Scholar
  22. [22]
    David Deutsch, Richard Jozsa. Rapid solution of problems by quantum computation. In Proc. the Royal Society of London A, 1992, 439: 553–558.Google Scholar
  23. [23]
    Bernstein E, Vazirani U. Quantum complexity theory. In the 25th Annual ACM Symposium on Theory of Computing (STOC), ACM Press, 1993, pp. 11–20.Google Scholar
  24. [24]
    Daniel R Simon. On the power of quantum computation. In the 35th Annual IEEE Symposium on Foundations of Computer Science, IEEE, New York, 1994, p.116.Google Scholar
  25. [25]
    Peter W Shor. Algorithms for quantum computation: Discrete log and factoring. In the 35th Annuel Symp. Foundations of Computer Science (FOCS), IEEE Press, 1994, pp. 124–134.Google Scholar
  26. [26]
    Ronald L Rivest, A Shamir, L Adleman. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 1978, 21(12): 120–126.zbMATHMathSciNetCrossRefGoogle Scholar
  27. [27]
    Grover L K. A fast quantum mechanical algorithm for database search. In the 28th Annual ACM Symposium on Theory of Computing (STOC), ACM Press, 1996, pp. 212–219.Google Scholar
  28. [28]
    Lov K Grover. Quantum mechanics helps in searching for a needle in a haystack. Physical Review Letters, 1997, 79(2): 325–328.CrossRefGoogle Scholar
  29. [29]
    Charles H Bennett, Ethan Bernstein, G Brassard, Umesh Vazirani. Strengths and weaknesses of quantum computing. SIAM Journal of Computing, 1997, 26(5): 1510–1523.zbMATHMathSciNetCrossRefGoogle Scholar
  30. [30]
    Michel Boyer, Gilles Brassard, Peter Hoeyer, Alain Tapp. Tight bounds on quantum searching. Fortschritte der Physik, 1998, 4–5(46): 493–505.CrossRefGoogle Scholar
  31. [31]
    Mosca M. Quantum computer algorithms [Dissertation]. University of Oxford, 1999.Google Scholar
  32. [32]
    Andris Ambainis. Quantum lower bounds by quantum arguments. In the 32nd Annual ACM Symposium on Theory of Computing (STOC), ACM Press, 2000, pp. 636–643.Google Scholar
  33. [33]
    Gui-Lu Long. Grover algorithm with zero theoretical failure rate. Physical Review A (Atomic, Molecular, and Optical Physics), 2001, 64(2): 022307.CrossRefGoogle Scholar
  34. [34]
    Dorit Aharonov, Andris Ambainis, Julia Kempe, Umesh Vazirani. Quantum walks on graphs. In the 33rd Annual ACM Symposium on Theory of Computing (STOC), ACM Press, 2001, pp. 50–59.Google Scholar
  35. [35]
    Andris Ambainis. Quantum walk algorithm for element distinctness. In the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS), IEEE Press, New York, 2004, pp. 22–31.Google Scholar
  36. [36]
    Andris Ambainis. Quantum walks and their algorithmic applications. Available online: http://arxiv.org/abs/quant-ph/0403120.
  37. [37]
    Chris Lomont. The hidden subgroup problem — Review and open problems. Available online: http://arxiv.org/abs/quant-ph/0411037.
  38. [38]
    Knill E. Conventions for quantum pseudocode. Technical Report LAUR-96-2724, Los Alamos National Laboratory, 1996.Google Scholar
  39. [39]
    Bernhard Ömer. A procedural formalism for quantum computing. Available online: http://tph.tuwien.ac.at/~oemer/qcl.html, 1998.
  40. [40]
    Sanders J W, Zuliani P. Quantum programming. Mathematics of Program Construction, 2000, 1837: 80–99.zbMATHGoogle Scholar
  41. [41]
    Bettelli S, Calarco T, Serafini L. Toward an architecture for quantum programming. European Physical Journal D, 2003, 25(2): 181–200.CrossRefGoogle Scholar
  42. [42]
    Selinger P. Towards a quantum programming language. Mathematical Structures in Computer Science, 2004, 14(4): 527–586.zbMATHMathSciNetCrossRefGoogle Scholar
  43. [43]
    Susan Stepney, Samuel L Braunstein, John A Clark et al. Journeys in non-classical computation I: A grand challenge for computing research. International Journal of Parallel, Emergent and Distributed Systems, 2005, 20(1): 5–19.MathSciNetGoogle Scholar
  44. [44]
    Susan Stepney, Samuel L Braunstein, John A Clark et al. Journeys in non-classical computation II: Initial journeys and waypoints. International Journal of Parallel, Emergent and Distributed Systems, 2006, 21(2): 97–125.zbMATHMathSciNetCrossRefGoogle Scholar
  45. [45]
    Claude E Shannon. A mathematical theory of communication. Bell System Technical Journal, 1948, 27: 379–423, 623–656.Google Scholar
  46. [46]
    Benjamin Schumacher. Quantum coding. Physical Review A (Atomic, Molecular, and Optical Physics), 1995, 51(4): 2738–2747.Google Scholar
  47. [47]
    Holevo A S. The capacity of the quantum channel with general signal states. IEEE Trans. Information Theory, IEEE Press, 1998, 44(1): 269–273.Google Scholar
  48. [48]
    Benjamin Schumacher, Michael D Westmoreland. Sending classical information via noisy quantum channels. Physical Review A (Atomic, Molecular, and Optical Physics), 1997, 56(1): 131–138.Google Scholar
  49. [49]
    Charles H Bennett, Peter W Shor. Quantum information theory. IEEE Trans. Information Theory, IEEE Press, 1998, 44(6): 2724–2742.Google Scholar
  50. [50]
    Charles H Bennett, G Brassard. Quantum cryptography: Public key distribution and coin tossing. In IEEE Int. Conf. Computers, Systems and Signal Processing, IEEE, New York, Bangalore, India, December 1984, p.175.Google Scholar
  51. [51]
    Peres A. How to differentiate between non-orthogonal states. Physics Letters A, 1988, 128(1–2): 19.MathSciNetCrossRefGoogle Scholar
  52. [52]
    Arun Kumar Pati, Samuel L Braunstein. Impossibility of deleting an unknown quantum state. Nature, 2000, 404: 164–165.CrossRefGoogle Scholar
  53. [53]
    Michael A Nielsen, Isaac L Chuang. Programmable quantum gate arrays. Physical Review Letters, 1997, 79(2): 321–324.zbMATHMathSciNetCrossRefGoogle Scholar
  54. [54]
    Gregg Jaeger, Abner Shimony. Optimal distinction between two non-orthogonal quantum states. Physics Letters A, 1995, 197(2): 83–87.zbMATHMathSciNetCrossRefGoogle Scholar
  55. [55]
    Lu-Ming Duan, Guang-Can Guo. Probabilistic cloning and identification of linearly independent quantum states. Physical Review Letters, 1998, 80(22): 4999–5002.CrossRefGoogle Scholar
  56. [56]
    Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? Physical Review, 1935, 47: 777–780.zbMATHCrossRefGoogle Scholar
  57. [57]
    Charles H Bennett, Stephen J Wiesner. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Physical Review Letters, 1992, 69(20): 2881–2884.zbMATHMathSciNetCrossRefGoogle Scholar
  58. [58]
    Charles H Bennett, Gilles Brassard, Claude Crépeau et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 1993, 70(13): 1895–1899.zbMATHMathSciNetCrossRefGoogle Scholar
  59. [59]
    Bouwmeester D, Pan J-W, Mattle K et al. Experimental quantum teleportation. Nature, 1997, 390: 575–579.CrossRefGoogle Scholar
  60. [60]
    Charles H Bennett, Herbert J Bernstein, Sandu Popescu et al. Concentrating partial entanglement by local operations. Physical Review A (Atomic, Molecular, and Optical Physics), 1996, 53(4): 2046–2052.CrossRefGoogle Scholar
  61. [61]
    Nielsen M A. Conditions for a class of entanglement transformations. Physical Review Letters, 1999, 83(2): 436–439.CrossRefGoogle Scholar
  62. [62]
    Charles H Bennett, Gilles Brassard, Sandu Popescu et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Physical Review Letters, 1996, 76(5): 722–725.CrossRefGoogle Scholar
  63. [63]
    Michal Horodecki, Pawel Horodecki, Ryszard Horodecki. Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature? Physical Review Letters, 1998, 80(24): 5239–5242.zbMATHMathSciNetCrossRefGoogle Scholar
  64. [64]
    Artur K Ekert. Quantum cryptography based on Bell’s theorem. Physical Review Letters, 1991, 67(6): 661–663.zbMATHMathSciNetCrossRefGoogle Scholar
  65. [65]
    Dominic Mayers. Unconditional security in quantum cryptography. Journal of the ACM, 2001, 48(3): 351–406.MathSciNetCrossRefGoogle Scholar
  66. [66]
    Andris Ambainis, Leonard J Schulman, Amnon Ta-Shma et al. Quantum communication complexity of sampling. In the 39th Annual IEEE Symposium on Foundations of Computer Science (FOCS), IEEE, New York, 1998, pp. 342–351.Google Scholar
  67. [67]
    Jens Eisert, Martin Wilkens, Maciej Lewenstein. Quantum games and quantum strategies. Physical Review Letters, 1999, 83(15): 3077–3080.zbMATHMathSciNetCrossRefGoogle Scholar
  68. [68]
    Jiangfeng Du, Hui Li, Xiaodong Xu et al. Experimental realization of quantum games on a quantum computer. Physical Review Letters, 2002, 88(13): 137902.CrossRefGoogle Scholar
  69. [69]
    Mingsheng Ying. A theory of computation based on quantum logic (I). Theoretical Computer Science, 2005, 344(2–3): 134–207.MathSciNetGoogle Scholar
  70. [70]
    Igor D Ivanovic. How to differentiate between non-orthogonal states. Physics Letters A, 1987, 123(6): 257–259.MathSciNetCrossRefGoogle Scholar
  71. [71]
    Dennis Dieks. Overlap and distinguishability of quantum states. Physics Letters A, 1988, 126(5-6): 303–306.MathSciNetCrossRefGoogle Scholar
  72. [72]
    Ban B. Error-free optimum quantum receiver for a binary pure quantum state signal. Physics Letters A, 1996, 213(5-6): 235–238.zbMATHMathSciNetCrossRefGoogle Scholar
  73. [73]
    Chefles A. Unambiguous discrimination between linearly independent quantum states. Physics Letters A, 1998, 239(6): 339–347.zbMATHMathSciNetCrossRefGoogle Scholar
  74. [74]
    Xiaoming Sun, Shengyu Zhang, Yuan Feng et al. Mathematical nature of and a family of lower bounds for the success probability of unambiguous discrimination. Physical Review A (Atomic, Molecular, and Optical Physics), 2002, 65(4): 044306.CrossRefGoogle Scholar
  75. [75]
    Vandenberghe L, Boyd S. Semidefinite programming. Siam Review, 1996, 38(1): 49–95.zbMATHMathSciNetCrossRefGoogle Scholar
  76. [76]
    Anthony Chefles, Stephen M Barnett. Quantum state separation, unambiguous discrimination and exact cloning. Journal of Physics A: Mathematical and General, 1998, 31: 10097.MathSciNetCrossRefGoogle Scholar
  77. [77]
    Shengyu Zhang, Yuan Feng, Xiaoming Sun et al. Upper bound for the success probability of unambiguous discrimination among quantum states. Physical Review A (Atomic, Molecular, and Optical Physics), 2001, 6406(6): 062103.CrossRefGoogle Scholar
  78. [78]
    Yuan Feng, Shengyu Zhang, Runyao Duan et al. Lower bound on inconclusive probability of unambiguous discrimination. Physical Review A (Atomic, Molecular, and Optical Physics), 2002, 66(6): 062313.CrossRefGoogle Scholar
  79. [79]
    Charles H Bennett, David P DiVincenzo, Christopher A Fuchs et al. Quantum nonlocality without entanglement. Physical Review A (Atomic, Molecular, and Optical Physics), 1999, 59(2): 1070–1091.MathSciNetCrossRefGoogle Scholar
  80. [80]
    Jonathan Walgate, Anthony J Short, Lucien Hardy et al. Local distinguishability of multipartite orthogonal quantum states. Physical Review Letters, 2000, 85(23): 4972–4975.CrossRefGoogle Scholar
  81. [81]
    S Virmani, M F Sacchi, Martin B Plenio et al. Optimal local discrimination of two multipartite pure states. Physics Letters A, 2001, 288(2): 62–68.zbMATHMathSciNetCrossRefGoogle Scholar
  82. [82]
    Yi-Xin Chen, Dong Yang. Optimal conclusive discrimination of two nonorthogonal pure product multipartite states through local operations. Physical Review A (Atomic, Molecular, and Optical Physics), 2001, 64(6): 064303.MathSciNetCrossRefGoogle Scholar
  83. [83]
    Yi-Xin Chen, Dong Yang. Optimally conclusive discrimination of nonorthogonal entangled states by local operations and classical communications. Physical Review A (Atomic, Molecular, and Optical Physics), 2002, 65(2): 022320.CrossRefGoogle Scholar
  84. [84]
    Zhengfeng Ji, Hongen Cao, Mingsheng Ying. Optimal conclusive discrimination of two states can be achieved locally. Physical Review A (Atomic, Molecular, and Optical Physics), 2005, 71(3): 032323.CrossRefGoogle Scholar
  85. [85]
    Rudolph T, Spekkens R W, Turner P S. Unambiguous discrimination of mixed states. Physical Review A (Atomic, Molecular, and Optical Physics), 2003, 68(1): 010301.MathSciNetCrossRefGoogle Scholar
  86. [86]
    Raynal P, Lutkenhaus N, van Enk S J. Reduction theorems for optimal unambiguous state discrimination of density matrices. Physical Review A (Atomic, Molecular, and Optical Physics), 2003, 68(2): 022308.CrossRefGoogle Scholar
  87. [87]
    Fiurasek J, Jezek M. Optimal discrimination of mixed quantum states involving inconclusive results. Physical Review A (Atomic, Molecular, and Optical Physics), 2003, 67(1): 012321.MathSciNetCrossRefGoogle Scholar
  88. [88]
    Eldar Y C. Mixed-quantum-state detection with inconclusive results. Physical Review A (Atomic, Molecular, and Optical Physics), 2003, 67(4): 042309.CrossRefGoogle Scholar
  89. [89]
    Yuan Feng, Runyao Duan, Mingsheng Ying. Unambiguous discrimination between mixed quantum states. Physical Review A (Atomic, Molecular, and Optical Physics), 2004, 70(1): 012308.CrossRefGoogle Scholar
  90. [90]
    Chi Zhang, Yuan Feng, Mingsheng Ying. Unambiguous discrimination of mixed quantum states. Physics Letters A, 2006, 353(4): 300–306.CrossRefGoogle Scholar
  91. [91]
    Chefles A. Condition for unambiguous state discrimination using local operations and classical communication. Physical Review A (Atomic, Molecular, and Optical Physics), 2004, 69(5): 050307.CrossRefGoogle Scholar
  92. [92]
    Acin A. Statistical distinguishability between unitary operations. Physical Review Letters, 2001, 8717(17): 177901.MathSciNetCrossRefGoogle Scholar
  93. [93]
    G M D’Ariano, P Lo Presti, M G A Paris. Using entanglement improves the precision of quantum measurements. Physical Review Letters, 2001, 87(7): 270404.CrossRefGoogle Scholar
  94. [94]
    Runyao Duan, Yuan Feng, Mingsheng Ying. Entanglement is not necessary for perfect discrimination between unitary operations. Available online: http://arxiv.org/abs/quant-ph/0601150, 2006.
  95. [95]
    Zhengfeng Ji, Yuan Feng, Runyao Duan et al. Identification and distance measures of measurement apparatus. Physical Review Letters, 2006, 96(20): 200401.CrossRefGoogle Scholar
  96. [96]
    Guoming Wang, Mingsheng Ying. Unambiguous discrimination between quantum operations. Physical Review A (Atomic, Molecular, and Optical Physics), 2006, 73(4): 042301.CrossRefGoogle Scholar
  97. [97]
    Vidal G. Entanglement of pure states for a single copy. Physical Review Letters, 1999, 83(5): 1046–1049.MathSciNetCrossRefGoogle Scholar
  98. [98]
    Jonathan D, Plenio M B. Minimal conditions for local pure-state entanglement manipulation. Physical Review Letters, 1999, 83(7): 1455–1458.MathSciNetCrossRefGoogle Scholar
  99. [99]
    Jonathan D, Plenio M B. Entanglement-assisted local manipulation of pure quantum states. Physical Review Letters, 1999, 83(17): 3566–3569.zbMATHMathSciNetCrossRefGoogle Scholar
  100. [100]
    Jens Eisert, Martin Wilkens. Catalysis of entanglement manipulation for mixed states. Physical Review Letters, 2000, 85(2): 437–440.CrossRefGoogle Scholar
  101. [101]
    Morikoshi F. Recovery of entanglement lost in entanglement manipulation. Physical Review Letters, 2000, 84(14): 3189–3192.CrossRefGoogle Scholar
  102. [102]
    Vidal G, Jonathan D, Nielsen M A. Approximate transformations and robust manipulation of bipartite pure state entanglement. Physical Review A (Atomic, Molecular, and Optical Physics), 2000, 62(1): 012304.CrossRefGoogle Scholar
  103. [103]
    Zhengwei Zhou, Guangcan Guo. Basic limitations for entanglement catalysis. Physics Letters A, 2000, 277(2): 70–74.MathSciNetCrossRefGoogle Scholar
  104. [104]
    Lo H-K, Popescu S. Concentrating entanglement by local actions: Beyond mean values. Physical Review A (Atomic, Molecular, and Optical Physics), 2001, 63(2): 022301.CrossRefGoogle Scholar
  105. [105]
    Bennett C H, Popescu S, Rohrlich D et al. Exact and asymptotic measures of multipartite pure state entanglement. Physical Review A (Atomic, Molecular, and Optical Physics), 2001, 63(1): 012307.Google Scholar
  106. [106]
    Morikoshi F, Koashi M. Deterministic entanglement concentration. Physical Review A (Atomic, Molecular, and Optical Physics), 2001, 64(2): 022316.MathSciNetCrossRefGoogle Scholar
  107. [107]
    Bandyopadhyay S, Roychowdhury V, Vatan F. Partial recovery of entanglement in bipartite-entanglement transformations. Physical Review A (Atomic, Molecular, and Optical Physics), 2001, 65(4): 040303 (Rapid Communications).Google Scholar
  108. [108]
    Leung D W, Smolin J A. More is not necessarily easier. Available online: http://arxiv.org/abs/quant-ph/0103158, 2001.
  109. [109]
    Daftuar S, Klimesh M. Mathematical structure of entanglement catalysis. Physical Review A (Atomic, Molecular, and Optical Physics), 2001, 64(4): 042314.MathSciNetCrossRefGoogle Scholar
  110. [110]
    Bandyopadhyay S, Roychowdhury V. Efficient entanglement-assisted transformation for bipartite pure states. Physical Review A (Atomic, Molecular, and Optical Physics), 2002, 65(4): 042303.MathSciNetGoogle Scholar
  111. [111]
    Bandyopadhyay S, Roychowdhury V, Sen U. Classification of nonasymptotic bipartite pure-state entanglement transformations. Physical Review A (Atomic, Molecular, and Optical Physics), 2002, 65(5): 052315.Google Scholar
  112. [112]
    Xunli Feng, Zhongyang Wang, Zhizhan Xu. Mutual catalysis of entanglement transformations for pure entangled states. Physical Review A (Atomic, Molecular, and Optical Physics), 2002, 65(2): 022307.CrossRefGoogle Scholar
  113. [113]
    Yuan Feng, Runyao Duan, Mingsheng Ying. The relation between catalyst-assisted entanglement transformation and multiple-copy transformation. Available online: http://arxiv.org/abs/quant-ph/0312110, 2003.
  114. [114]
    Zhengfeng Ji, Runyao Duan, Mingsheng Ying. Comparability of multipartite entanglement. Physics Letters A, 2004, 330(3): 418–423.MathSciNetCrossRefGoogle Scholar
  115. [115]
    Runyao Duan, Yuan Feng, Mingsheng Ying. An equivalence of entanglement-assisted transformation and multiple-copy entanglement transformation. Available online: http://arxiv.org/abs/quant-ph/0404046, 2004.
  116. [116]
    Yuan Feng, Runyao Duan, Mingsheng Ying. When catalysis is useful for probabilistic entanglement transformation. Physical Review A (Atomic, Molecular, and Optical Physics), 2004, 69(6): 062310.CrossRefGoogle Scholar
  117. [117]
    Sumit Kumar Daftuar. Eigenvalue inequalities in quantum information processing [Dissertation]. California Institute of Technology, 2004.Google Scholar
  118. [118]
    Xiaoming Sun, Runyao Duan, Mingsheng Ying. The existence of quantum entanglement catalysts. IEEE Trans. Information Theory, 2005, 51(1): 75–80.CrossRefGoogle Scholar
  119. [119]
    Runyao Duan, Yuan Feng, Zhengfeng Ji et al. Efficiency of deterministic entanglement transformation. Physical Review A (Atomic, Molecular, and Optical Physics), 2004, 71(2): 022305.CrossRefGoogle Scholar
  120. [120]
    Yuan Feng, Runyao Duan, Mingsheng Ying. Catalyst-assisted probabilistic entanglement transformation. IEEE Transanctions on Information Theory, 2005, 51(3): 1090–1101.CrossRefGoogle Scholar
  121. [121]
    Runyao Duan, Yuan Feng, Xin Li et al. Trade-off between multiple-copy transformation and entanglement catalysis. Physical Review A (Atomic, Molecular, and Optical Physics), 2005, 71(6): 062306.CrossRefGoogle Scholar
  122. [122]
    Runyao Duan, Yuan Feng, Xin Li et al. Multiple-copy entanglement transformation and entanglement catalysis. Physical Review A (Atomic, Molecular, and Optical Physics), 2005, 71(4): 042319.MathSciNetCrossRefGoogle Scholar
  123. [123]
    Runyao Duan, Yuan Feng, Mingsheng Ying. Entanglement-assisted transformation is asympotically equivalent to multiple-copy transformation. Physical Review A (Atomic, Molecular, and Optical Physics), 2005, 72(2): 024306.Google Scholar
  124. [124]
    Runyao Duan, Yuan Feng, Mingsheng Ying. Partial recovery of quantum entanglement. IEEE Trans. Information Theory (accepted, in press), Available online: http://arxiv.org/abs/quant-ph/0404047, 2006.
  125. [125]
    Marshall A W, Olkin I. Inequalities: Theory of Majorization and Its Applications. Academic Press, New York, 1st Edition, 1979.Google Scholar
  126. [126]
    Alberti P M, Uhlmann A. Stochasticity and Partial Order: Doubly Stochastic Maps and Unitary Mixing. Dordrecht, Boston, 1st Edition, 1982.Google Scholar
  127. [127]
    Vidal G, Cirac J I. Catalysis in nonlocal quantum operations. Physical Review Letters, 2002, 88(16): 167903.CrossRefGoogle Scholar
  128. [128]
    Bennett C H, Shor P W, Smolin J A et al. Entanglement-assisted classical capacity of a quantum channel and the reverse Shannon theorem. IEEE Trans. Information Theory, 2002, 48(10): 2637–2655.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Run-Yao Duan
    • 1
  • Zheng-Feng Ji
    • 1
  • Yuan Feng
    • 1
  • Ming-Sheng Ying
    • 1
  1. 1.State Key Laboratory of Intelligent Technology and Systems, Department of Computer Science and TechnologyTsinghua UniversityBeijingP.R. China

Personalised recommendations