Advertisement

Molekulare und biologische Grundlage zum Einfluss von Sport auf die Krebsentstehung

  • P. ZimmerEmail author
  • A. Schenk
  • T. Elter
Schwerpunkt
  • 3 Downloads

Zusammenfassung

Körperliche Aktivität und gezielte sporttherapeutische Maßnahmen haben sich mittlerweile als Supportivtherapie in der Onkologie bewährt, um Nebenwirkungen der Erkrankung und der medizinischen Therapie zu reduzieren und die Lebensqualität der Betroffenen zu steigern. Eine immer besser werdende epidemiologische Datenlage weist ferner darauf hin, dass körperliche Aktivität und Sport das Erkrankungsrisiko reduzieren und die tumorspezifische Mortalität beispielsweise für Kolorektalkarzinome um bis zu 60 % senken. Diese Daten sind insbesondere im Vergleich zum relativ geringen Benefit einer adjuvanten Chemotherapie beachtlich und deuten auf den erheblichen immunologischen Effekt körperlicher Aktivität hin. Einschränkend ist zu sagen, dass hierzu noch keine Daten großer prospektiv-randomisierter Interventionsstudien vorliegen, wobei sich die Durchführung solcher Untersuchungen im Vergleich zu pharmakologischen Studien deutlich komplexer gestaltet. Um die Bewegungsempfehlungen jenseits der global empfohlenen 150 min moderater bis intensiver körperliche Aktivität pro Woche zu konkretisieren, sind weitere, v. a. mechanistische Studien notwendig. Vor diesem Hintergrund soll dieser Artikel eine Übersicht über potenzielle biologische Mechanismen geben, über die Bewegung und Sport der Entstehung und dem Fortschreiten von Tumorerkrankungen entgegenwirken können. Neben einer globalen Veränderung des systemischen Entzündungsgeschehens werden sportinduzierte Veränderungen von Immunzellfunktionen und direkte Effekte durch eine Veränderung des Tumormilieus diskutiert.

Schlüsselwörter

Körperliche Betätigung Tumorgenese Immunsystem Inflammation Tumormikroumgebung 

Molecular and biological mechanism of physical exercise on carcinogenesis

Abstract

General physical activity and physical exercise have become a meaningful supportive therapy in oncology, since they have proven to reduce several disease- and treatment-specific side effects and to increase patients’ quality of life. Ample evidence from epidemiological investigations suggests that regular physical activity significantly decreases cancer risk and mortality. However, prospective randomized controlled trials are still lacking. Of note, such trials have many trapdoors and are more complex than usual pharmaceutical trials. In order to improve general physical activity and exercise recommendations, more mechanistic research is urgently needed. Against this background, this article will provide an overview on mechanistic studies, investigating the impact of exercise interventions on tumorgenesis and the progress of disease. In addition to alterations in systemic inflammatory signaling, the activation of tumor-competetive lymphocytes as well direct effects on the tumor microenvironment will be discussed.

Keywords

Physical exercise Carcinogenesis Immune system Inflammation Tumor microenvironment 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

P. Zimmer, A. Schenk und T. Elter geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Agostini D, Natalucci V, Baldelli G et al (2018) New insights into the role of exercise in inhibiting mTOR signaling in triple-negative breast cancer. Oxid Med Cell Longev 2018:5896786CrossRefPubMedGoogle Scholar
  2. 2.
    Betof AS, Lascola CD, Weitzel D et al (2015) Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise. J Natl Cancer Inst.  https://doi.org/10.1093/jnci/djv040 CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Bigley AB, Rezvani K, Chew C et al (2014) Acute exercise preferentially redeploys NK-cells with a highly-differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells. Brain Behav Immun 39:160–171CrossRefGoogle Scholar
  4. 4.
    Bjorke ACH, Sweegers MG, Buffart LM et al (2019) Which exercise prescriptions optimize VO2max during cancer treatment?—A systematic review and meta-analysis. Scand J Med Sci Sports.  https://doi.org/10.1111/sms.13442 CrossRefPubMedGoogle Scholar
  5. 5.
    Buffart LM, Kalter J, Sweegers MG et al (2017) Effects and moderators of exercise on quality of life and physical function in patients with cancer: an individual patient data meta-analysis of 34 RCTs. Cancer Treat Rev 52:91–104CrossRefGoogle Scholar
  6. 6.
    Buffart LM, Sweegers MG, May AM et al (2018) Targeting exercise interventions to patients with cancer in need: an individual patient data meta-analysis. J Natl Cancer Inst 110:1190–1200CrossRefGoogle Scholar
  7. 7.
    Campbell JP, Turner JE (2018) Debunking the myth of exercise-induced immune suppression: redefining the impact of exercise on immunological health across the lifespan. Front Immunol 9:648CrossRefPubMedGoogle Scholar
  8. 8.
    Christ A, Latz E (2019) The Western lifestyle has lasting effects on metaflammation. Nat Rev Immunol 19:267–268CrossRefGoogle Scholar
  9. 9.
    Cormie P, Zopf EM, Zhang X et al (2017) The impact of exercise on cancer mortality, recurrence, and treatment-related adverse effects. Epidemiol Rev 39:71–92CrossRefGoogle Scholar
  10. 10.
    Dethlefsen C, Hansen LS, Lillelund C et al (2017) Exercise-induced Catecholamines activate the hippo tumor suppressor pathway to reduce risks of breast cancer development. Cancer Res 77:4894–4904CrossRefPubMedGoogle Scholar
  11. 11.
    Dethlefsen C, Lillelund C, Midtgaard J et al (2016) Exercise regulates breast cancer cell viability: systemic training adaptations versus acute exercise responses. Breast Cancer Res Treat 159:469–479CrossRefPubMedGoogle Scholar
  12. 12.
    Devin JL, Hill MM, Mourtzakis M et al (2019) Acute high intensity interval exercise reduces colon cancer cell growth. J Physiol 597:2177–2184CrossRefPubMedGoogle Scholar
  13. 13.
    Eschke RK, Lampit A, Schenk A et al (2019) Impact of physical exercise on growth and progression of cancer in rodents—A systematic review and meta-analysis. Front Oncol 9:35CrossRefPubMedGoogle Scholar
  14. 14.
    Fulop T, Larbi A, Witkowski JM (2019) Human Inflammaging. Gerontology.  https://doi.org/10.1159/000497375 CrossRefPubMedGoogle Scholar
  15. 15.
    Garcia E, Becker VG, Mccullough DJ et al (2016) Blood flow responses to mild-intensity exercise in ectopic vs. orthotopic prostate tumors; dependence upon host tissue hemodynamics and vascular reactivity. J Appl Physiol 121:15–24CrossRefPubMedGoogle Scholar
  16. 16.
    Hsia JY, Chen JT, Chen CY et al (2005) Prognostic significance of intratumoral natural killer cells in primary resected esophageal squamous cell carcinoma. Chang Gung Med J 28:335–340PubMedGoogle Scholar
  17. 17.
    Ishigami S, Natsugoe S, Tokuda K et al (2000) Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer 88:577–583CrossRefPubMedGoogle Scholar
  18. 18.
    Jiang W, Zhu Z, Thompson HJ (2013) Effects of limiting energy availability via diet and physical activity on mammalian target of rapamycin-related signaling in rat mammary carcinomas. Carcinogenesis 34:378–387CrossRefPubMedGoogle Scholar
  19. 19.
    Johnson AR, Milner JJ, Makowski L (2012) The inflammation highway: metabolism accelerates inflammatory traffic in obesity. Immunol Rev 249:218–238CrossRefPubMedGoogle Scholar
  20. 20.
    Kang DW, Lee J, Suh SH et al (2017) Effects of exercise on insulin, IGF axis, Adipocytokines, and inflammatory markers in breast cancer survivors: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev 26:355–365CrossRefGoogle Scholar
  21. 21.
    Kurgan N, Tsakiridis E, Kouvelioti R et al (2017) Inhibition of human lung cancer cell proliferation and survival by post-exercise serum is associated with the inhibition of Akt, mTOR, p70 S6K, and Erk1/2. Cancers (Basel) 9(5):46.  https://doi.org/10.3390/cancers9050046 CrossRefGoogle Scholar
  22. 22.
    Lee KR, Seo MH, Do HK et al (2018) Waist circumference and risk of 23 site-specific cancers: a population-based cohort study of Korean adults. Br J Cancer 119:1018–1027CrossRefGoogle Scholar
  23. 23.
    Leitzmann M, Powers H, Anderson AS et al (2015) European code against cancer 4th edition: physical activity and cancer. Cancer Epidemiol 39(Suppl 1):46–55CrossRefGoogle Scholar
  24. 24.
    Metcalfe AJ, Koliamitra C, Javelle F et al (2018) Acute and chronic effects of exercise on the kynurenine pathway in humans—A brief review and future perspectives. Physiol Behav 194:583–587CrossRefGoogle Scholar
  25. 25.
    Mishra SI, Scherer RW, Geigle PM et al (2012) Exercise interventions on health-related quality of life for cancer survivors. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD007566.pub2 CrossRefPubMedGoogle Scholar
  26. 26.
    Moller AB, Lonbro S, Farup J et al (2019) Molecular and cellular adaptations to exercise training in skeletal muscle from cancer patients treated with chemotherapy. J Cancer Res Clin Oncol 145(6):1449–1460.  https://doi.org/10.1007/s00432-019-02911-5 CrossRefGoogle Scholar
  27. 27.
    Nakajima K, Takeoka M, Mori M et al (2010) Exercise effects on methylation of ASC gene. Int J Sports Med 31:671–675CrossRefGoogle Scholar
  28. 28.
    Nieman DC, Miller AR, Henson DA et al (1993) Effects of high- vs moderate-intensity exercise on natural killer cell activity. Med Sci Sports Exerc 25:1126–1134Google Scholar
  29. 29.
    Pedersen BK, Fischer CP (2007) Beneficial health effects of exercise—the role of IL-6 as a myokine. Trends Pharmacol Sci 28:152–156CrossRefGoogle Scholar
  30. 30.
    Pedersen L, Idorn M, Olofsson GH et al (2016) Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution. Cell Metab 23:554–562CrossRefPubMedGoogle Scholar
  31. 31.
    Platten M, Nollen EA, Rohrig UF et al (2019) Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat Rev Drug Discov 18:379–401CrossRefPubMedGoogle Scholar
  32. 32.
    Radom-Aizik S, Zaldivar F, Haddad F et al (2013) Impact of brief exercise on peripheral blood NK cell gene and microRNA expression in young adults. J Appl Physiol 114:628–636CrossRefPubMedGoogle Scholar
  33. 33.
    Rundqvist H, Augsten M, Stromberg A et al (2013) Effect of acute exercise on prostate cancer cell growth. PLoS ONE 8:e67579CrossRefPubMedGoogle Scholar
  34. 34.
    Rundqvist H, Veliça P, Barbieri L et al (2019) Lactate potentiates differentiation and expansion of cytotoxic T cells. bioRxiv.  https://doi.org/10.1101/571745 CrossRefGoogle Scholar
  35. 35.
    Schenk A, Pulverer W, Koliamitra C et al (2019) Acute exercise increases the expression of KIR2DS4 by promoter Demethylation in NK cells. Int J Sports Med 40:62–70CrossRefPubMedGoogle Scholar
  36. 36.
    Schmid D, Leitzmann MF (2014) Association between physical activity and mortality among breast cancer and colorectal cancer survivors: a systematic review and meta-analysis. Ann Oncol 25:1293–1311CrossRefPubMedGoogle Scholar
  37. 37.
    Villegas FR, Coca S, Villarrubia VG et al (2002) Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Cancer Treat Res 35:23–28Google Scholar
  38. 38.
    Weinhold M, Shimabukuro-Vornhagen A, Franke A et al (2016) Physical exercise modulates the homeostasis of human regulatory T cells. J Allergy Clin Immunol 137:1607–1610CrossRefPubMedGoogle Scholar
  39. 39.
    Zimmer P, Bloch W, Kieven M et al (2017) Serotonin shapes the migratory potential of NK cells—an in vitro approach. Int J Sports Med 38:857–863CrossRefPubMedGoogle Scholar
  40. 40.
    Zimmer P, Bloch W, Schenk A et al (2015) Exercise-induced natural killer cell activation is driven by Epigenetic modifications. Int J Sports Med 36:510–515CrossRefGoogle Scholar
  41. 41.
    Zimmer P, Schenk A, Kieven M et al (2017) Exercise induced alterations in NK-cell cytotoxicity—methodological issues and future perspectives. Exerc Immunol Rev 23:66–81Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Kreislaufforschung und Sportmedizin, Abteilung für molekulare und zelluläre SportmedizinDeutsche Sporthochschule KölnKölnDeutschland
  2. 2.Klinik I für Innere Medizin, Centrum für Integrierte Onkologie Aachen Bonn Köln DüsseldorfUniversität zu KölnKölnDeutschland

Personalised recommendations