Advertisement

Der Gastroenterologe

, Volume 14, Issue 2, pp 116–125 | Cite as

Geschlechtsspezifische Unterschiede beim Management des kolorektalen Karzinoms

  • A. Reinacher-SchickEmail author
  • N. Höffken
  • B. Flott-Rahmel
  • A. Tannapfel
Schwerpunkt
  • 72 Downloads

Zusammenfassung

Das kolorektale Karzinom (KRK) ist noch immer eine der häufigsten Tumorerkrankungen in der westlichen Welt. Frauen sind später und seltener betroffen als Männer, das Überleben ist nicht signifikant unterschiedlich. In der Krankheitsentstehung scheinen Östrogene protektiv zu wirken, wobei der genaue Mechanismus unklar ist. Abweichungen zwischen den Geschlechtern sind bezüglich der Primärtumorlokalisation sowie der Molekulargenetik beschrieben. Vor allem rechtsseitige Tumoren und Tumoren mit einer hochgradigen Mikrosatelliteninstabilität (MSI-H) treten bei Frauen öfter auf. Frauen nehmen offenbar etwas häufiger an Vorsorgeprogrammen teil, allerdings ist die Effektivität des Screenings bei Männern höher. Weder zu geschlechtsspezifischen Unterschieden in der Toxizität noch zur Wirksamkeit einer Systemtherapie gibt es in der adjuvanten oder palliativen Therapiesituation prospektive geschlechtsspezifische Daten. Retrospektive Auswertungen kontrollierter Studien ergeben hier vor allem Unterschiede in der 5‑Fluorouraci- und Irinotecantoxizität. In der Wirksamkeit mag es gewisse geschlechtsspezifische Unterschiede für Antikörper gegen den epidermalen Wachstumsfaktorrezeptor (EGFR) zu geben, wobei Frauen weniger von dieser Substanzgruppe zu profitieren scheinen als Männer.

Schlüsselwörter

Epidemiologie Risikofaktoren Hormonersatztherapie Toxizität Therapie 

Gender-specific differences in the management of colorectal cancer

Abstract

Colorectal cancer (CRC) is still one of the most common cancer types in the western world. Women develop the disease later and less often than men but survival does not seem to significantly differ. Estrogens appear to have a protective effect in the development of CRC, although the exact mechanism is not known. Primary tumor location and the molecular characteristics are also different between men and women. Of clinical relevance, right-sided cancers and cancers with high microsatellite instability (MSI-H) are more common in women. Women participate more often in screening programs in general, while the efficacy of screening is higher in men. There are no prospective, gender-specific data from clinical trials regarding the efficacy or toxicity of systemic therapy in the adjuvant or palliative therapeutic setting. Retrospective data from controlled studies have revealed differences in 5‑fluorouracil and irinotecan toxicity. With respect to efficacy, there may be certain gender-specific differences regarding anti-epidermal growth factor receptor (EGFR) antibodies, with women showing somewhat less benefit compared to men.

Keywords

Epidemiology Risk factors Hormone replacement therapy Toxicity Therapy  

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

A. Reinacher-Schick erhielt Honorare von den Firmen Amgen, Roche, Pfizer, Sanofi-Aventis, Merck Serono, Shire, Celgene, Lilly, BMS, Servier, Baxalta, MSD, und war Advisory-board-Mitglied bei den Firmen Amgen, Roche, Pfizer, Sanofi-Aventis, Merck Serono, Celgene, Lilly, BMS, Servier, Baxalta, MSD und erhielt Studienförderungen von den Firmen Roche, Sanofi-Aventis, Celgene, Ipsen. A. Tannapfel erhielt Honorare von den Firmen Amgen, Roche, Pfizer, Merck Serono, Celgene, BMS, MSD sowie Studienförderung von den Firmen Roche, Celgene. N. Höffken erhielt Honorare von: Alexion, Amgen, Roche, Pfizer und war Advisory-board-Mitglied bei der Firma Baxalta. B. Flott-Rahmel gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Brenner H, Hoffmeister M, Arndt V, Haug U (2007) Gender differences in colorectal cancer: implications for age at initiation of screening. Br J Cancer 96:828–831CrossRefGoogle Scholar
  2. 2.
    Chacko L, Macaron C, Burke CA (2015) Colorectal cancer screening and prevention in women. Dig Dis Sci 60:698–710CrossRefGoogle Scholar
  3. 3.
    Kim SE, Paik HY, Yoon H et al (2015) Sex- and gender-specific disparities in colorectal cancer risk. World J Gastroenterol 21:5167–5175CrossRefGoogle Scholar
  4. 4.
    Nguyen SP, Bent S, Chen YH, Terdiman JP (2009) Gender as a risk factor for advanced neoplasia and colorectal cancer: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 7:676–681.e1-3CrossRefGoogle Scholar
  5. 5.
    White A, Ironmonger L, Steele RJC et al (2018) A review of sex-related differences in colorectal cancer incidence, screening uptake, routes to diagnosis, cancer stage and survival in the UK. BMC Cancer 18:906CrossRefGoogle Scholar
  6. 6.
    Krebsatlas. www.rki.de. Zugegriffen: 31. Januar 2019
  7. 7.
    Douaiher J, Ravipati A, Grams B et al (2017) Colorectal cancer-global burden, trends, and geographical variations. J Surg Oncol 115:619–630CrossRefGoogle Scholar
  8. 8.
    Micheli A, Ciampichini R, Oberaigner W et al (2009) The advantage of women in cancer survival: an analysis of EUROCARE-4 data. Eur J Cancer 45:1017–1027CrossRefGoogle Scholar
  9. 9.
    De Angelis R, Sant M, Coleman MP et al (2014) Cancer survival in Europe 1999–2007 by country and age: results of EUROCARE-5—a population-based study. Lancet Oncol 15:23–34CrossRefGoogle Scholar
  10. 10.
    Fernandez E, Bosetti C, La Vecchia C et al (2000) Sex differences in colorectal cancer mortality in Europe, 1955–1996. Eur J Cancer Prev 9:99–104CrossRefGoogle Scholar
  11. 11.
    Hendifar A, Yang D, Lenz F et al (2009) Gender disparities in metastatic colorectal cancer survival. Clin Cancer Res 15:6391–6397CrossRefGoogle Scholar
  12. 12.
    Schutze M, Boeing H, Pischon T et al (2011) Alcohol attributable burden of incidence of cancer in eight European countries based on results from prospective cohort study. BMJ 342:d1584CrossRefGoogle Scholar
  13. 13.
    McCashland TM, Brand R, Lyden E, de Garmo P (2001) Gender differences in colorectal polyps and tumors. Am J Gastroenterol 96:882–886CrossRefGoogle Scholar
  14. 14.
    Tanaka Y, Arai T, Uegaki S et al (2016) Characteristics of colonoscopic findings in the very elderly. Geriatr Gerontol Int 16:1319–1323CrossRefGoogle Scholar
  15. 15.
    Siegel RJA (2011) Colorectal cancer facts and figures 2011–2013. In: Colorectal Cancer Facts & Figures. Atlanta. Online availible: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/colorectal-cancer-facts-and-figures/colorectal-cancer-facts-and-figures-2011-2013.pdf
  16. 16.
    Iida Y, Kawai K, Tsuno NH et al (2014) Proximal shift of colorectal cancer along with aging. Clin Colorectal Cancer 13:213–218CrossRefGoogle Scholar
  17. 17.
    Reinacher-Schick A, Juette H, Noepel-Duennebacke S, Arnold D, Basara N, Boehner H, Dahm T, Feder I, Herzog T, Hiller W, Mueller L, Engel L, Senkal M, Teschendorf C, Trenn G, Verdoodt B, Wolters H, Uhl W, Tannapfel A (2018) Microsatellite instability is associated with distinct clinical and molecular characteristics in early colon cancer: analysis of a molecular registry of the AIO colorectal study group—Colopredict Plus. Ann Oncol 29:viii150–viii204.  https://doi.org/10.1093/annonc/mdy281 CrossRefGoogle Scholar
  18. 18.
    Krebsatlas. Benz, Gerken, Klinkhammer-Schalke, 7. Bundesweite Qualitätskonferenz 23.02.2018Google Scholar
  19. 19.
    Arai T, Takubo K (2007) Clinicopathological and molecular characteristics of gastric and colorectal carcinomas in the elderly. Pathol Int 57:303–314CrossRefGoogle Scholar
  20. 20.
    Meguid RA, Slidell MB, Wolfgang CL, Chang DC, Ahuja N (2008) Is there a difference in survival between right- versus left-sided colon cancers? Ann Surg Oncol 15:2388–2394CrossRefGoogle Scholar
  21. 21.
    Okamoto M, Shiratori Y, Yamaji Y et al (2002) Relationship between age and site of colorectal cancer based on colonoscopy findings. Gastrointest Endosc 55:548–551CrossRefGoogle Scholar
  22. 22.
    Papaxoinis K, Triantafyllou K, Sasco AJ, Nicolopoulou-Stamati P, Ladas SD (2010) Subsite-specific differences of estrogen receptor beta expression in the normal colonic epithelium: implications for carcinogenesis and colorectal cancer epidemiology. Eur J Gastroenterol Hepatol 22:614–619CrossRefGoogle Scholar
  23. 23.
    Benedix F, Kube R, Meyer F et al (2010) Comparison of 17,641 patients with right- and left-sided colon cancer: differences in epidemiology, perioperative course, histology, and survival. Dis Colon Rectum 53:57–64CrossRefGoogle Scholar
  24. 24.
    Rossouw JE, Anderson GL, Prentice RL et al (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA 288:321–333CrossRefGoogle Scholar
  25. 25.
    Hartz A, He T, Ross JJ (2012) Risk factors for colon cancer in 150,912 postmenopausal women. Cancer Causes Control 23:1599–1605CrossRefGoogle Scholar
  26. 26.
    Jass JR (2007) Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology 50:113–130CrossRefGoogle Scholar
  27. 27.
    Copija A, Waniczek D, Witkos A, Walkiewicz K, Nowakowska-Zajdel E (2017) Clinical significance and prognostic relevance of microsatellite instability in sporadic colorectal cancer patients. Int J Mol Sci.  https://doi.org/10.3390/ijms18010107 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Malkhosyan SR, Yamamoto H, Piao Z, Perucho M (2000) Late onset and high incidence of colon cancer of the mutator phenotype with hypermethylated hMLH1 gene in women. Baillieres Clin Gastroenterol 119:598Google Scholar
  29. 29.
    Ribic CM, Sargent DJ, Moore MJ et al (2003) Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 349:247–257CrossRefGoogle Scholar
  30. 30.
    Roth AD, Delorenzi M, Tejpar S et al (2012) Integrated analysis of molecular and clinical prognostic factors in stage II/III colon cancer. J Natl Cancer Inst 104:1635–1646CrossRefGoogle Scholar
  31. 31.
    Sargent DJ, Marsoni S, Monges G et al (2010) Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol 28:3219–3226CrossRefGoogle Scholar
  32. 32.
    Romiti A, Rulli E, Pilozzi E et al (2017) Exploring the prognostic role of microsatellite instability in patients with stage II colorectal cancer: a systematic review and meta-analysis. Clin Colorectal Cancer 16:e55–e59CrossRefGoogle Scholar
  33. 33.
    Hoffmeister M, Blaker H, Kloor M et al (2013) Body mass index and microsatellite instability in colorectal cancer: a population-based study. Cancer Epidemiol Biomarkers Prev 22:2303–2311CrossRefGoogle Scholar
  34. 34.
    Tsai YJ, Huang SC, Lin HH et al (2018) Differences in gene mutations according to gender among patients with colorectal cancer. World J Surg Oncol 16:128CrossRefGoogle Scholar
  35. 35.
    Koo JH, Leong RW (2010) Sex differences in epidemiological, clinical and pathological characteristics of colorectal cancer. J Gastroenterol Hepatol 25:33–42CrossRefGoogle Scholar
  36. 36.
    Rakoff-Nahoum S, Medzhitov R (2007) Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science 317:124–127CrossRefGoogle Scholar
  37. 37.
    Konstantinopoulos PA, Kominea A, Vandoros G et al (1990) Oestrogen receptor beta (ERbeta) is abundantly expressed in normal colonic mucosa, but declines in colon adenocarcinoma paralleling the tumour’s dedifferentiation. Eur J Cancer 2003(39):1251–1258Google Scholar
  38. 38.
    Driggers PH, Segars JH (2002) Estrogen action and cytoplasmic signaling pathways. Part II: the role of growth factors and phosphorylation in estrogen signaling. Trends Endocrinol Metab 13:422–427CrossRefGoogle Scholar
  39. 39.
    Martin LA, Farmer I, Johnston SR, Ali S, Dowsett M (2005) Elevated ERK1/ERK2/estrogen receptor cross-talk enhances estrogen-mediated signaling during long-term estrogen deprivation. Endocr Relat Cancer 12(Suppl 1):S75–S84CrossRefGoogle Scholar
  40. 40.
    Torre DS, Biserni A, Rando G et al (2011) The conundrum of estrogen receptor oscillatory activity in the search for an appropriate hormone replacement therapy. Endocrinology 152:2256–2265CrossRefGoogle Scholar
  41. 41.
    Goldstein NS, Armin M (2001) Epidermal growth factor receptor immunohistochemical reactivity in patients with American Joint Committee on Cancer Stage IV colon adenocarcinoma: implications for a standardized scoring system. Cancer 92:1331–1346CrossRefGoogle Scholar
  42. 42.
    Rego RL, Foster NR, Smyrk TC et al (2010) Prognostic effect of activated EGFR expression in human colon carcinomas: comparison with EGFR status. Br J Cancer 102:165–172CrossRefGoogle Scholar
  43. 43.
    Bonaccorsi L, Muratori M, Carloni V et al (2004) The androgen receptor associates with the epidermal growth factor receptor in androgen-sensitive prostate cancer cells. Steroids 69:549–552CrossRefGoogle Scholar
  44. 44.
    Levin ER (2003) Bidirectional signaling between the estrogen receptor and the epidermal growth factor receptor. Mol Endocrinol 17:309–317CrossRefGoogle Scholar
  45. 45.
    Traish AM, Morgentaler A (2009) Epidermal growth factor receptor expression escapes androgen regulation in prostate cancer: a potential molecular switch for tumour growth. Br J Cancer 101:1949–1956CrossRefGoogle Scholar
  46. 46.
    Press OA, Zhang W, Gordon MA et al (2008) Gender-related survival differences associated with EGFR polymorphisms in metastatic colon cancer. Cancer Res 68:3037–3042CrossRefGoogle Scholar
  47. 47.
    Buerger H, Gebhardt F, Schmidt H et al (2000) Length and loss of heterozygosity of an intron 1 polymorphic sequence of egfr is related to cytogenetic alterations and epithelial growth factor receptor expression. Cancer Res 60:854–857PubMedGoogle Scholar
  48. 48.
    Lorentzen JA, Grzyb K, De Angelis PM et al (2016) Oncogene mutations in colorectal polyps identified in the Norwegian Colorectal Cancer Prevention (NORCCAP) screening study. Clin Med Insights Pathol 9:19–28CrossRefGoogle Scholar
  49. 49.
    Clarke N, Gallagher P, Kearney PM, McNamara D, Sharp L (2016) Impact of gender on decisions to participate in faecal immunochemical test-based colorectal cancer screening: a qualitative study. Psychooncology 25:1456–1462CrossRefGoogle Scholar
  50. 50.
    Saab MM, Landers M, Hegarty J (2017) Exploring awareness and help-seeking intentions for testicular symptoms among heterosexual, gay, and bisexual men in Ireland: a qualitative descriptive study. Int J Nurs Stud 67:41–50CrossRefGoogle Scholar
  51. 51.
    Teo CH, Ng CJ, Booth A, White A (2016) Barriers and facilitators to health screening in men: a systematic review. Soc Sci Med 165:168–176CrossRefGoogle Scholar
  52. 52.
    Tinmouth J, Ritvo P, McGregor SE et al (2011) A qualitative evaluation of strategies to increase colorectal cancer screening uptake. Can Fam Physician 57:e7–e15PubMedPubMedCentralGoogle Scholar
  53. 53.
    Brenner H, Zwink N, Ludwig L, Hoffmeister M (2017) Should screening colonoscopy be offered from age 50? Dtsch Arztebl Int 114:94–100PubMedPubMedCentralGoogle Scholar
  54. 54.
    McGregor LM, Bonello B, Kerrison RS et al (2016) Uptake of Bowel Scope (Flexible Sigmoidoscopy) Screening in the English National Programme: the first 14 months. J Med Screen 23:77–82CrossRefGoogle Scholar
  55. 55.
    Wardle J, Miles A, Atkin W (2005) Gender differences in utilization of colorectal cancer screening. J Med Screen 12:20–27CrossRefGoogle Scholar
  56. 56.
    Kerrison RS, McGregor LM, Marshall S et al (2016) Use of a 12 months’ self-referral reminder to facilitate uptake of bowel scope (flexible sigmoidoscopy) screening in previous non-responders: a London-based feasibility study. Br J Cancer 114:751–758CrossRefGoogle Scholar
  57. 57.
    Quyn AJ, Fraser CG, Stanners G et al (2018) Uptake trends in the Scottish Bowel Screening Programme and the influences of age, sex, and deprivation. J Med Screen 25:24–31CrossRefGoogle Scholar
  58. 58.
    Steele RJ, McClements P, Watling C et al (2012) Interval cancers in a FOBT-based colorectal cancer population screening programme: implications for stage, gender and tumour site. Gut 61:576–581CrossRefGoogle Scholar
  59. 59.
    Arana-Arri E, Idigoras I, Uranga B et al (2017) Population-based colorectal cancer screening programmes using a faecal immunochemical test: should faecal haemoglobin cut-offs differ by age and sex? BMC Cancer 17:577CrossRefGoogle Scholar
  60. 60.
    Wichmann MW, Muller C, Hornung HM, Lau-Werner U, Schildberg FW (2001) Gender differences in long-term survival of patients with colorectal cancer. Br J Surg 88:1092–1098CrossRefGoogle Scholar
  61. 61.
    Paulson EC, Wirtalla C, Armstrong K, Mahmoud NN (2009) Gender influences treatment and survival in colorectal cancer surgery. Dis Colon Rectum 52:1982–1991CrossRefGoogle Scholar
  62. 62.
    Sato H, Maeda K, Sugihara K et al (2011) High-risk stage II colon cancer after curative resection. J Surg Oncol 104:45–52CrossRefGoogle Scholar
  63. 63.
    Andre T, de Gramont A, Vernerey D et al (2015) Adjuvant Fluorouracil, Leucovorin, and Oxaliplatin in stage II to III colon cancer: updated 10-year survival and outcomes according to BRAF mutation and mismatch repair status of the MOSAIC study. J Clin Oncol 33:4176–4187CrossRefGoogle Scholar
  64. 64.
    Twelves C, Wong A, Nowacki MP et al (2005) Capecitabine as adjuvant treatment for stage III colon cancer. N Engl J Med 352:2696–2704CrossRefGoogle Scholar
  65. 65.
    Gray R, Barnwell J, McConkey C et al (2007) Adjuvant chemotherapy versus observation in patients with colorectal cancer: a randomised study. Lancet 370:2020–2029CrossRefGoogle Scholar
  66. 66.
    Grothey A, Sobrero AF, Shields AF et al (2018) Duration of adjuvant chemotherapy for stage III colon cancer. N Engl J Med 378:1177–1188CrossRefGoogle Scholar
  67. 67.
    Schmiegel W, Buchberger B, Follmann M et al (2017) Z Gastroenterol 55:1344–1498CrossRefGoogle Scholar
  68. 68.
    Shields AF, Ou FS, Paul J et al (2018) J Clin Oncol 36:abstr 3599CrossRefGoogle Scholar
  69. 69.
    Giacchetti S, Bjarnason G, Garufi C et al (2006) Phase III trial comparing 4‑day chronomodulated therapy versus 2‑day conventional delivery of fluorouracil, leucovorin, and oxaliplatin as first-line chemotherapy of metastatic colorectal cancer: the European Organisation for Research and Treatment of Cancer Chronotherapy Group. J Clin Oncol 24:3562–3569CrossRefGoogle Scholar
  70. 70.
    Levi F, Gorlia T, Tubiana N et al (2005) Gender as a predictor for optimal dynamic scheduling of oxaliplatin, 5‑fluorouracil and leucovorin in patients with metastatic colorectal cancer. Results from EORTC randomized phase III trial 05963. ASCO Meeting Abstracts 2005;23.CrossRefGoogle Scholar
  71. 71.
    Loupakis F, Bria E, Vaccaro V et al (2010) Magnitude of benefit of the addition of bevacizumab to first-line chemotherapy for metastatic colorectal cancer: meta-analysis of randomized clinical trials. J Exp Clin Cancer Res 29:58CrossRefGoogle Scholar
  72. 72.
    Heinemann V, von Weikersthal LF, Decker T et al (2014) FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol 15:1065–1075CrossRefGoogle Scholar
  73. 73.
    Seymour MT, Maughan TS, Ledermann JA et al (2007) Different strategies of sequential and combination chemotherapy for patients with poor prognosis advanced colorectal cancer (MRC FOCUS): a randomised controlled trial. Lancet 370:143–152CrossRefGoogle Scholar
  74. 74.
    Schirripa M, Yang D, Loupakis F et al (2016) Females versus males: Clinical features and outcome differences in large molecularly selected cohort of mCRC patients. J Clin Oncol 34:abstr 3540CrossRefGoogle Scholar
  75. 75.
    Deenen MJ, Cats A, Beijnen JH, Schellens JH (2011) Part 1: background, methodology, and clinical adoption of pharmacogenetics. Oncologist 16:811–819CrossRefGoogle Scholar
  76. 76.
    de Gramont A, Figer A, Seymour M et al (2000) Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol 18:2938–2947CrossRefGoogle Scholar
  77. 77.
    Stein BN, Petrelli NJ, Douglass HO et al (1995) Age and sex are independent predictors of 5‑fluorouracil toxicity. Analysis of a large scale phase III trial. Cancer 75:11–17CrossRefGoogle Scholar
  78. 78.
    Chansky K, Benedetti J, Macdonald JS (2005) Differences in toxicity between men and women treated with 5‑fluorouracil therapy for colorectal carcinoma. Cancer 103:1165–1171CrossRefGoogle Scholar
  79. 79.
    Mueller F, Buchel B, Koberle D et al (2013) Gender-specific elimination of continuous-infusional 5‑fluorouracil in patients with gastrointestinal malignancies: results from a prospective population pharmacokinetic study. Cancer Chemother Pharmacol 71:361–370CrossRefGoogle Scholar
  80. 80.
    Wagner AD, Grothey A (2018) Association of sex and adverse events (AEs) of adjuvant chemotherapy (ACT) in early stage colon cancer (CC): A pooled analysis of 28,636 patients (pts) in the ACCENT database. J Clin Oncol 36:abstr 3603CrossRefGoogle Scholar
  81. 81.
    Islam MM, Iqbal U, Walther BA et al (2017) Gender-based personalized pharmacotherapy: a systematic review. Arch Gynecol Obstet 295:1305–1317CrossRefGoogle Scholar
  82. 82.
    Gemeinsame Publikation der Gesellschaft der epidemiologischen Krebsregister in Deutschland e. V. (GEKID), Zentrums für Krebsregisterdaten (ZfKD) (2017) Krebs in Deutschland für 2013/2014. 11. Ausgabe. Robert Koch-Institut, BerlinGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • A. Reinacher-Schick
    • 1
    Email author
  • N. Höffken
    • 1
  • B. Flott-Rahmel
    • 2
  • A. Tannapfel
    • 2
  1. 1.Abteilung für Hämatologie, Onkologie und Palliativmedizin, St. Josef-Hospital, KlinikumRuhr-Universität BochumBochumDeutschland
  2. 2.Institut für PathologieRuhr-Universität BochumBochumDeutschland

Personalised recommendations