Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Darmmikrobiom und Ernährung

Rolle der Pre-, Pro- und Synbiotika in Entstehung und Therapie ernährungsmitbedingter Erkrankungen

Intestinal microbiome and nutrition

Role of pre-, pro- and synbiotics in the development and therapy of diet-related diseases

  • 570 Accesses

  • 2 Citations

Zusammenfassung

Hintergrund

Veränderungen des Darmmikrobioms werden inzwischen im Kontext mit der Entstehung einer Vielzahl von Krankheiten diskutiert. Hierbei sind in den letzten Jahren neben entzündlichen Darmerkrankungen auch Adipositas und damit assoziierte metabolische Erkrankungen sowie Krebserkrankungen, v. a. im Bereich des Gastrointestinaltrakts, in das Zentrum des wissenschaftlichen Interesses gerückt.

Aktuelle Befunde und Therapieimplikation

Im vorliegenden Übersichtsartikel werden neuere Befunde zur Rolle des intestinalen Mikrobioms bei der Entstehung von Adipositas und assoziierten metabolischen Veränderungen sowie in der Pathogenese von Krebserkrankungen mit einem speziellen Fokus auf den Dickdarm zusammengefasst. Des Weiteren wird der Einfluss der Supplementation von Pre-, Pro- und Synbiotika im Zusammenhang mit der Therapie dieser Erkrankungen beleuchtet.

Abstract

Background

Alterations of the intestinal microbiome are discussed in context with the development of many diseases. During the last few years, not only inflammatory bowel disease but also obesity and associated metabolic diseases as well as cancer especially within the gastrointestinal tract have moved to the center of scientific interest in this context.

Current knowledge and therapeutic implications

The present review summarizes new findings regarding the role of intestinal microbiome in the development of obesity and associated metabolic diseases as well as in the pathogenesis of cancer with specific focus on cancers in the large intestine. Furthermore, the effect of supplementation of pre-, pro- and synbiotics in relation to therapies of these diseases is reviewed.

This is a preview of subscription content, log in to check access.

Abb. 1

Literatur

  1. 1.

    Festi D, Schiumerini R, Eusebi LH et al (2014) Gut microbiota and metabolic syndrome. World J Gastroenterol 20(43):16079–16094

  2. 2.

    Backhed F, Ley RE, Sonnenburg JL et al (2005) Host-bacterial mutualism in the human intestine. Science 307(5717):1915–1920

  3. 3.

    Turnbaugh PJ, Ley RE, Mahowald MA et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031

  4. 4.

    Ley RE, Backhed F, Turnbaugh P et al (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102(31):11070–11075

  5. 5.

    Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457(7228):480–484

  6. 6.

    Wu GD, Compher C, Chen EZ et al (2014) Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut doi: 10.1136/gutjnl-2014-308209. (Epub ahead of print)

  7. 7.

    Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023

  8. 8.

    Chen Z, Guo L, Zhang Y et al (2014) Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J Clin Invest 124(8):3391–3406

  9. 9.

    Silva ST da, Santos CA dos, Bressan J (2013) Intestinal microbiota; relevance to obesity and modulation by prebiotics and probiotics. Nutr Hosp 28(4):1039–1048

  10. 10.

    Beserra BT, Fernandes R, Rosario VA do et al (2014) A systematic review and meta-analysis of the prebiotics and synbiotics effects on glycaemia, insulin concentrations and lipid parameters in adult patients with overweight or obesity. Clin Nutr (in press)

  11. 11.

    Liber A, Szajewska H (2013) Effects of inulin-type fructans on appetite, energy intake, and body weight in children and adults: systematic review of randomized controlled trials. Ann Nutr Metab 63(1–2):42–54

  12. 12.

    Scanlan PD, Shanahan F, Clune Y et al (2008) Culture-independent analysis of the gut microbiota in colorectal cancer and polyposis. Environ Microbiol 10(3):789–798

  13. 13.

    Wang T, Cai G, Qiu Y et al (2012) Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J 6(2):320–329

  14. 14.

    Scharlau D, Borowicki A, Habermann N et al (2009) Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutat Res 682(1):39–53

  15. 15.

    Sheflin AM, Whitney AK, Weir TL (2014) Cancer-promoting effects of microbial dysbiosis. Curr Oncol Rep 16(10):406

  16. 16.

    World Cancer Research Fund/American Institute for Cancer Research (2007) Food, nutrition, physical activity, and the prevention of cancer: a global perspective. http://www.dietandcancerreport.org/cancer_resource_center/downloads/Second_Expert_Report_full.pdf, Zugegriffen: 23. Januar 2015

  17. 17.

    Serban DE (2014) Gastrointestinal cancers: influence of gut microbiota, probiotics and prebiotics. Cancer Lett 345(2):258–270

  18. 18.

    Pala V, Sieri S, Berrino F et al (2011) Yogurt consumption and risk of colorectal cancer in the Italian European prospective investigation into cancer and nutrition cohort. Int J Cancer 129(11):2712–2719

  19. 19.

    Abdelali H, Cassand P, Soussotte V et al (1995) Antimutagenicity of components of dairy products. Mutat Res 331(1):133–141

  20. 20.

    Kassayova M, Bobrov N, Strojny L et al (2014) Preventive effects of probiotic bacteria Lactobacillus plantarum and dietary fiber in chemically-induced mammary carcinogenesis. Anticancer Res 34(9):4969–4975

  21. 21.

    Ishikawa H, Akedo I, Otani T et al (2005) Randomized trial of dietary fiber and Lactobacillus casei administration for prevention of colorectal tumors. Int J Cancer 116(5):762–767

  22. 22.

    Ohashi Y, Nakai S, Tsukamoto T et al (2002) Habitual intake of lactic acid bacteria and risk reduction of bladder cancer. Urol Int 68(4):273–280

  23. 23.

    Glei M, Habermann N, Osswald K et al (2005) Assessment of DNA damage and its modulation by dietary and genetic factors in smokers using the Comet assay: a biomarker model. Biomarkers 10(2–3):203–217

  24. 24.

    Molan AL, Liu Z, Plimmer G (2014) Evaluation of the effect of blackcurrant products on gut microbiota and on markers of risk for colon cancer in humans. Phytother Res 28(3):416–422

  25. 25.

    Rafter J, Bennett M, Caderni G et al (2007) Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am J Clin Nutr 85(2):488–496

  26. 26.

    Tanaka K, Yano M, Motoori M et al (2012) Impact of perioperative administration of synbiotics in patients with esophageal cancer undergoing esophagectomy: a prospective randomized controlled trial. Surgery 152(5):832–842

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. I. Bergheim und M. Glei geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Correspondence to Prof. Dr. I. Bergheim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bergheim, I., Glei, M. Darmmikrobiom und Ernährung. Gastroenterologe 10, 116–121 (2015). https://doi.org/10.1007/s11377-014-0966-4

Download citation

Schlüsselwörter

  • Stoffwechsel
  • Adipositas
  • Krebs
  • Darm
  • Prävention

Keywords

  • Metabolism
  • Adiposity
  • Cancer
  • Intestines
  • Prevention