Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Neue endoskopische Methoden zur Schleimhautbeurteilung im Gastrointestinaltrakt

New endoscopic techniques for the characterization of gastrointestinal mucosa

  • 217 Accesses

Zusammenfassung

Technische Innovationen in der Endoskopie haben die verbesserte Detektion und Charakterisierung von Veränderungen des Gastrointestinaltrakts zum Ziel. Hier hat insbesondere die hochauflösende Endoskopie Eingang in die Routinediagnostik gefunden, die in einigen, aber nicht allen Studien mit einer verbesserten Detektion einherging. Die hochauflösende Endoskopie ist meist verbunden mit optischen oder softwarebasierten Methoden der Oberflächenkontrastanhebung (NBI, I-Scan, FICE), die ihren Stellenwert insbesondere in der genauen Charakterisierung von Läsionen haben. Aber auch die klassische Chromoendoskopie durch Aufsprühen von Farbstoffen hat weiter ihre Bedeutung sowohl zum Auffinden als auch zur Einordnung suspekter Areale. Die mikroskopisch-endoskopischen Verfahren Endomikroskopie und Endozytoskopie erlauben nicht nur eine Prädiktion der Histologie, sondern visualisieren Pathologien auf zellulärer und subzellulärer Ebene.

Abstract

Technical innovations in endoscopy aim at enhanced detection and characterization of lesions of the gastrointestinal tract. High resolution endoscopy has become part of routine endoscopy and has been associated with higher detection rates in some but not all trials. Optical or software-based methods of surface contrast enhancement (e.g. NBI, i-scan, FICE) are mainly used for detailed characterization of lesions. Chromoendoscopy by topical application of intravital dyes still plays a role in detection and characterization of suspicious mucosal areas. Microscopic endoscopy methods, such as endomicroscopy and endocytoscopy not only try to predict the histology but are able to visualize pathologies at cellular and sub-cellular levels.

This is a preview of subscription content, log in to check access.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. 1.

    Murthy S, Goetz M, Hoffman A, Kiesslich R (2012) Novel colonoscopic imaging. Clin Gastroenterol Hepatol 10: 984–987

  2. 2.

    Canto MI (1999) Staining in gastrointestinal endoscopy: the basics. Endoscopy 31: 479–486

  3. 3.

    Jung M, Kiesslich R (1999) Chromoendoscopy and intravital staining techniques. Baillieres Best Pract Res Clin Gastroenterol 13: 11–19

  4. 4.

    Kudo S, Tamura S, Nakajima T et al (1996) Diagnosis of colorectal tumorous lesions by magnifying endoscopy. Gastrointest Endosc 44: 8–14

  5. 5.

    Kato S, Fujii T, Koba I et al (2001) Assessment of colorectal lesions using magnifying colonoscopy and mucosal dye spraying: can significant lesions be distinguished? Endoscopy 33: 306–310

  6. 6.

    Rembacken BJ, Fujii T, Cairns A et al (2000) Flat and depressed colonic neoplasms: a prospective study of 1000 colonoscopies in the UK. Lancet 355: 1211–1214

  7. 7.

    Soetikno RM, Kaltenbach T, Rouse RV et al (2008) Prevalence of nonpolypoid (flat and depressed) colorectal neoplasms in asymptomatic and symptomatic adults. JAMA 299: 1027–1035

  8. 8.

    Kudo S, Kashida H, Tamura T et al (2000) Colonoscopic diagnosis and management of nonpolypoid early colorectal cancer. World J Surg 24: 1081–1090

  9. 9.

    Kiesslich R, Neurath MF (2004) Surveillance colonoscopy in ulcerative colitis: magnifying chromoendoscopy in the spotlight. Gut 53: 165–167

  10. 10.

    Kiesslich R, Fritsch J, Holtmann M et al (2003) Methylene blue-aided chromoendoscopy for the detection of intraepithelial neoplasia and colon cancer in ulcerative colitis. Gastroenterology 124: 880–888

  11. 11.

    Hurlstone DP, McAlindon ME, Sanders DS et al (2004) Further validation of high-magnification chromoscopic-colonoscopy for the detection of intraepithelial neoplasia and colon cancer in ulcerative colitis. Gastroenterology 126: 376–378

  12. 12.

    Rutter MD, Saunders BP, Schofield G et al (2004) Pancolonic indigo carmine dye spraying for the detection of dysplasia in ulcerative colitis. Gut 53: 256–260

  13. 13.

    Hurlstone DP, Sanders DS, Lobo AJ et al (2005) Indigo carmine-assisted high-magnification chromoscopic colonoscopy for the detection and characterisation of intraepithelial neoplasia in ulcerative colitis: a prospective evaluation. Endoscopy 37: 1186–1192

  14. 14.

    Kiesslich R, Goetz M, Lammersdorf K et al (2007) Chromoscopy-guided endomicroscopy increases the diagnostic yield of intraepithelial neoplasia in ulcerative colitis. Gastroenterology 132: 874–882

  15. 15.

    Marion JF, Waye JD, Present DH et al (2008) Chromoendoscopy-targeted biopsies are superior to standard colonoscopic surveillance for detecting dysplasia in inflammatory bowel disease patients: a prospective endoscopic trial. Am J Gastroenterol 103: 2342–2349

  16. 16.

    Machida H, Sano Y, Hamamoto Y et al (2004) Narrow-band imaging in the diagnosis of colorectal mucosal lesions: a pilot study. Endoscopy 36: 1094–1098

  17. 17.

    Kaltenbach T, Friedland S, Soetikno R (2008) A randomised tandem colonoscopy trial of narrow band imaging versus white light examination to compare neoplasia miss rates. Gut 57: 1406–1412

  18. 18.

    Adler A, Aschenbeck J, Yenerim T et al (2009) Narrow-band versus white-light high definition television endoscopic imaging for screening colonoscopy: a prospective randomized trial. Gastroenterology 136: 410–416 e1, quiz 715

  19. 19.

    Rex DK, Helbig CC (2007) High yields of small and flat adenomas with high-definition colonoscopes using either white light or narrow band imaging. Gastroenterology 133: 42–47

  20. 20.

    Adler A, Pohl H, Papanikolaou IS et al (2008) A prospective randomised study on narrow-band imaging versus conventional colonoscopy for adenoma detection: does narrow-band imaging induce a learning effect? Gut 57: 59–64

  21. 21.

    Pohl J, Lotterer E, Balzer C et al (2009) Computed virtual chromoendoscopy versus standard colonoscopy with targeted indigocarmine chromoscopy: a randomised multicentre trial. Gut 58: 73–78

  22. 22.

    Singh R, Anagnostopoulos GK, Yao K et al (2008) Narrow-band imaging with magnification in Barrett’s esophagus: validation of a simplified grading system of mucosal morphology patterns against histology. Endoscopy 40: 457–463

  23. 23.

    Bergman JJ (2005) Endoscopic treatment of high-grade intraepithelial neoplasia and early cancer in Barrett oesophagus. Best Pract Res Clin Gastroenterol 19: 889–907

  24. 24.

    Kara MA, Peters FP, Rosmolen WD et al (2005) High-resolution endoscopy plus chromoendoscopy or narrow-band imaging in Barrett’s esophagus: a prospective randomized crossover study. Endoscopy 37: 929–936

  25. 25.

    Kara MA, Bergman JJ (2006) Autofluorescence imaging and narrow-band imaging for the detection of early neoplasia in patients with Barrett’s esophagus. Endoscopy 38: 627–631

  26. 26.

    Kara MA, Ennahachi M, Fockens P et al (2006) Detection and classification of the mucosal and vascular patterns (mucosal morphology) in Barrett’s esophagus by using narrow band imaging. Gastrointest Endosc 64: 155–166

  27. 27.

    Curvers WL, Kiesslich R, Bergman JJ (2008) Novel imaging modalities in the detection of oesophageal neoplasia. Best Pract Res Clin Gastroenterol 22: 687–720

  28. 28.

    Hoffman A, Basting N, Goetz M et al (2009) High-definition endoscopy with i-Scan and Lugol’s solution for more precise detection of mucosal breaks in patients with reflux symptoms. Endoscopy 41: 107–112

  29. 29.

    Hoffman A, Kagel C, Goetz M et al (2010) Recognition and characterization of small colonic neoplasia with high-definition colonoscopy using i-Scan is as precise as chromoendoscopy. Dig Liver Dis 42: 45–50

  30. 30.

    Hoffman A, Sar F, Goetz M et al (2010) High definition colonoscopy combined with i-Scan is superior in the detection of colorectal neoplasias compared with standard video colonoscopy: a prospective randomized controlled trial. Endoscopy 42: 827–833

  31. 31.

    Curvers WL, Singh R, Song LM et al (2008) Endoscopic tri-modal imaging for detection of early neoplasia in Barrett’s oesophagus: a multi-centre feasibility study using high-resolution endoscopy, autofluorescence imaging and narrow band imaging incorporated in one endoscopy system. Gut 57: 167–172

  32. 32.

    Broek FJ van den, Fockens P, Eeden S van et al (2008) Endoscopic tri-modal imaging for surveillance in ulcerative colitis: randomised comparison of high-resolution endoscopy and autofluorescence imaging for neoplasia detection; and evaluation of narrow-band imaging for classification of lesions. Gut 57: 1083–1089

  33. 33.

    Broek FJ van den, Fockens P, Van Eeden S et al (2009) Clinical evaluation of endoscopic trimodal imaging for the detection and differentiation of colonic polyps. Clin Gastroenterol Hepatol 7: 288–295

  34. 34.

    Kuiper T, Broek FJ van den, Naber AH et al (2011) Endoscopic trimodal imaging detects colonic neoplasia as well as standard video endoscopy. Gastroenterology 140: 1887–1894

  35. 35.

    Roy HK, Gomes A, Turzhitsky V et al (2008) Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk. Gastroenterology 135: 1069–1078

  36. 36.

    Inoue H, Sasajima K, Kaga M et al (2006) Endoscopic in vivo evaluation of tissue atypia in the esophagus using a newly designed integrated endocytoscope: a pilot trial. Endoscopy 38: 891–895

  37. 37.

    Sasajima K, Kudo SE, Inoue H et al (2006) Real-time in vivo virtual histology of colorectal lesions when using the endocytoscopy system. Gastrointest Endosc 63: 1010–1017

  38. 38.

    Kudo SE, Wakamura K, Ikehara N et al (2011) Diagnosis of colorectal lesions with a novel endocytoscopic classification – a pilot study. Endoscopy 43: 869–875

  39. 39.

    Kiesslich R, Burg J, Vieth M et al (2004) Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. Gastroenterology 127: 706–713

  40. 40.

    Goetz M, Watson A, Kiesslich R (2011) Confocal laser endomicroscopy in gastrointestinal diseases. J Biophotonics 4: 498–508

  41. 41.

    Kiesslich R, Goetz M, Neurath MF (2008) Confocal laser endomicroscopy for gastrointestinal diseases. Gastrointest Endosc Clin N Am 18: 451–466, viii

  42. 42.

    De Palma GD, Wallace MB, Giovannini M (2012) Confocal laser endomicroscopy. Gastroenterol Res Pract 2012: 216209

  43. 43.

    Pech O, Rabenstein T, Manner H et al (2008) Confocal laser endomicroscopy for in vivo diagnosis of early squamous cell carcinoma in the esophagus. Clin Gastroenterol Hepatol 6: 89–94

  44. 44.

    Dunbar KB, Okolo P III, Montgomery E, Canto MI (2009) Confocal laser endomicroscopy in Barrett’s esophagus and endoscopically inapparent Barrett’s neoplasia: a prospective, randomized, double-blind, controlled, crossover trial. Gastrointest Endosc 70: 645–654

  45. 45.

    Ji R, Zuo XL, Li CQ et al (2010) Confocal endomicroscopy for in vivo prediction of completeness after endoscopic mucosal resection. Surg Endosc 25(6): 1933–1938

  46. 46.

    Goetz M, Ansems JV, Galle PR et al (2011) In vivo real-time imaging of the liver with confocal endomicroscopy permits visualization of the temporospatial patterns of hepatocyte apoptosis. Am J Physiol Gastrointest Liver Physiol 301: G764–G772

  47. 47.

    Kiesslich R, Goetz M, Angus EM et al (2007) Identification of epithelial gaps in human small and large intestine by confocal endomicroscopy. Gastroenterology 133: 1769–1778

  48. 48.

    Kiesslich R, Duckworth CA, Moussata D et al (2012) Local barrier dysfunction identified by confocal laser endomicroscopy predicts relapse in inflammatory bowel disease. Gut 61: 1146–1153

  49. 49.

    Mahmood U (2010) Optical molecular imaging approaches in colorectal cancer. Gastroenterology 138: 419–422

  50. 50.

    Goetz M, Wang TD (2010) Molecular imaging in gastrointestinal endoscopy. Gastroenterology 138: 828–833 e1

  51. 51.

    Goetz M (2012) Molecular imaging in GI endoscopy. Gastrointest Endosc 76: 1207–1209

  52. 52.

    Goetz M, Ziebart A, Foersch S et al (2010) In vivo molecular imaging of colorectal cancer with confocal endomicroscopy by targeting epidermal growth factor receptor. Gastroenterology 138: 435–446

  53. 53.

    Hoetker MS, Kiesslich R, Diken M et al (2012) Molecular in vivo imaging of gastric cancer in a human-murine xenograft model: targeting Epidermal Growth Factor Receptor (EGFR). Gastrointest Endosc 76: 612–620

  54. 54.

    Hsiung PL, Hardy J, Friedland S et al (2008) Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nat Med 14: 454–458

  55. 55.

    Bishnu PJ, Zhongyao L, Sakib FE et al (2012) Near-infrared-labeled peptide multimer functions as phage-mimic for high affinity, specific targeting of colonic adenomas in vivo. Gastrointest Endosc 76: 1197–1206

  56. 56.

    Rex DK, Kahi C, O’Brien M et al (2011) The American Society for Gastrointestinal Endoscopy PIVI (preservation and incorporation of valuable endoscopic innovations) on real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest Endosc 73: 419–422

Download references

Interessenkonflikt

Der korrespondierende Autor weist für sich und seine Koautoren auf folgende Beziehungen hin: Vortragshonorare von Pentax.

Author information

Correspondence to Prof. Dr. M. Götz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hoffman, A., Kiesslich, R. & Götz, M. Neue endoskopische Methoden zur Schleimhautbeurteilung im Gastrointestinaltrakt. Gastroenterologe 8, 112–117 (2013). https://doi.org/10.1007/s11377-012-0722-6

Download citation

Schlüsselwörter

  • Läsionen des Gastrointestinaltrakts
  • Hochauflösende Endoskopie
  • Chromoendoskopie
  • Endomikroskopie
  • Endozytoskopie

Keywords

  • Gastrointestinal tract lesions
  • High resolution endoscopy
  • Chromoendoscopy
  • Endomicroscopy
  • Endocytoscopy