Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Hereditäre Defekte hepatobiliärer Transportproteine

Hereditary defects of hepatobiliary transport proteins

  • 166 Accesses

Zusammenfassung

Eine gestörte Funktion hepatobiliärer Transportproteine kann zu schweren hereditären cholestatischen Leberkrankheiten führen. Die progressive familiäre intrahepatische Cholestase (PFIC) manifestiert sich im frühen Kindesalter. Varianten des FIC1-Aminophospholipidtransporters (ATP8B1-Gen) verursachen sowohl die PFIC1 als auch die benigne rekurrente intrahepatische Cholestase vom Typ 1 (BRIC1). Ein Funktionsverlust der Gallensäuren-Effluxpumpe BSEP (ABCB11) führt zu PFIC2 oder BRIC2. Eine häufige BSEP-Variante, der V444A-Polymorphismus, wird häufig bei verschiedenen Arten von Cholestase gefunden, u. a. bei medikamentös induzierten Leberschäden. Schließlich führt die Dysfunktion des „multidrug resistance gene product 3“ (MDR3, ABCB4) zu PFIC3, die mit niedrigen biliären Phospholipiden und – aufgrund von Gallengangsschädigungen – hohen GGT-Konzentrationen im Serum einhergeht. Alle drei Transportergene sind auch mit gewissen Formen der intrahepatischen Schwangerschaftscholestase assoziiert. Die Behandlungsoptionen umfassen die Gabe von Ursodeoxycholsäure (UDCA) bei milderen Verlaufsformen bis hin zur Lebertransplantation bei schweren pädiatrischen cholestatischen Leberkrankheiten.

Abstract

Defects in transport proteins that are expressed at the hepatocyte canalicular membrane can cause severe impairment of hepatobiliary transport processes. Progressive familial intrahepatic cholestasis (PFIC) typically manifests in early childhood. Genetic variants in the aminophospholipid transporter FIC1 (ATP8B1 gene) cause PFIC1, characterized by elevated serum bile acids but normal or only mildly elevated gamma-GT levels. Benign recurrent intrahepatic cholestasis type 1 (BRIC1) is also caused by ATP8B1 mutations. Defects in the function of the bile salt efflux pump (BSEP; ABCB11) cause PFIC2 or BRIC2, depending on the degree of BSEP impairment. A common BSEP variant, the V444A polymorphism, is commonly found in various types of cholestatic liver injury, including drug-induced liver injury. Finally, dysfunction of the multidrug resistance gene product MDR3 (ABCB4) leads to PFIC3, characterized by low biliary phospholipids and high gamma-GT levels in serum due to bile duct injury. All three transporter genes are also associated with intrahepatic cholestasis of pregnancy. Treatment options include ursodeoxycholic acid for milder forms and liver transplantation for severe pediatric cases.

This is a preview of subscription content, log in to check access.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. 1.

    Kullak-Ublick GA, Stieger B, Meier PJ (2004) Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology 126: 322–342

  2. 2.

    Byrne JA et al (2002) The human bile salt export pump: characterization of substrate specificity and identification of inhibitors. Gastroenterology 123: 1649–1658

  3. 3.

    Pauli-Magnus C et al (2005) Enterohepatic transport of bile salts and genetics of cholestasis. J Hepatol 43: 342–357

  4. 4.

    Monte MJ et al (2009) Bile acids: chemistry, physiology, and pathophysiology. World J Gastroenterol 15: 804–816

  5. 5.

    Trauner M et al (2008) Lessons from the toxic bile concept for the pathogenesis and treatment of cholestatic liver diseases. Wien Med Wochenschr 158(19–20): 542–548

  6. 6.

    Eloranta JJ, Kullak-Ublick GA (2005) Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Arch Biochem Biophys 433: 397–412

  7. 7.

    Jung D, Fried M, Kullak-Ublick GA (2002) Human apical sodium-dependent bile salt transporter gene (SLC10A2) is regulated by the peroxisome proliferator-activated receptor alpha. J Biol Chem 277: 30559–30566

  8. 8.

    Jung D et al (2004) Human ileal bile acid transporter gene ASBT (SLC10A2) is transactivated by the glucocorticoid receptor. Gut 53: 78–84

  9. 9.

    Makishima M et al (1999) Identification of a nuclear receptor for bile acids. Science 284: 1362–1365

  10. 10.

    Kim I et al (2007) Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J Lipid Res 48: 2664–2672

  11. 11.

    Wagner M, Zollner G, Trauner M (2009) New molecular insights into the mechanisms of cholestasis. J Hepatol 51: 565–580

  12. 12.

    Ujhazy P et al (2001) Familial intrahepatic cholestasis 1: studies of localization and function. Hepatology 34: 768–775

  13. 13.

    Ismair MG et al (2009) ABC-transporters are localized in caveolin-1-positive and reggie-1-negative and reggie-2-negative microdomains of the canalicular membrane in rat hepatocytes. Hepatology 49: 1673–1682

  14. 14.

    Lykavieris P et al (2003) Progressive familial intrahepatic cholestasis type 1 and extrahepatic features: no catch-up of stature growth, exacerbation of diarrhea, and appearance of liver steatosis after liver transplantation. J Hepatol 39: 447–452

  15. 15.

    Cai SY et al (2009) ATP8B1 deficiency disrupts the bile canalicular membrane bilayer structure in hepatocytes, but FXR expression and activity are maintained. Gastroenterology 136: 1060–1069

  16. 16.

    Gonzales E et al (2009) Liver diseases related to MDR3 (ABCB4) gene deficiency. Front Biosci 14: 4242–4256

  17. 17.

    Alissa FT, Jaffe R, Shneider BL (2008) Update on progressive familial intrahepatic cholestasis. J Pediatr Gastroenterol Nutr 46: 241–252

  18. 18.

    Frankenberg T et al (2008) The membrane protein ATPase class I type 8B member 1 signals through protein kinase C zeta to activate the farnesoid X receptor. Hepatology 48: 1896–1905

  19. 19.

    Klomp LW et al (2004) Characterization of mutations in ATP8B1 associated with hereditary cholestasis. Hepatology 40: 27–38

  20. 20.

    Noe J et al (2005) Impaired expression and function of the bile salt export pump due to three novel ABCB11 mutations in intrahepatic cholestasis. J Hepatol 43: 536–543

  21. 21.

    Jansen PL et al (1999) Hepatocanalicular bile salt export pump deficiency in patients with progressive familial intrahepatic cholestasis. Gastroenterology 117: 1370–1379

  22. 22.

    Jara P et al (2009) Recurrence of bile salt export pump deficiency after liver transplantation. N Engl J Med 361: 1359–1367

  23. 23.

    Mil SW van et al (2004) Benign recurrent intrahepatic cholestasis type 2 is caused by mutations in ABCB11. Gastroenterology 127: 379–384

  24. 24.

    Kubitz R et al (2006) Benign recurrent intrahepatic cholestasis associated with mutations of the bile salt export pump. J Clin Gastroenterol 40: 171–175

  25. 25.

    Dixon PH et al (2009) Contribution of variant alleles of ABCB11 to susceptibility to intrahepatic cholestasis of pregnancy. Gut 58: 537–544

  26. 26.

    Meier Y et al (2008) Increased susceptibility for intrahepatic cholestasis of pregnancy and contraceptive-induced cholestasis in carriers of the 1331T>C polymorphism in the bile salt export pump. World J Gastroenterol 14: 38–45

  27. 27.

    Pauli-Magnus C et al (2004) Sequence analysis of bile salt export pump (ABCB11) and multidrug resistance p-glycoprotein 3 (ABCB4, MDR3) in patients with intrahepatic cholestasis of pregnancy. Pharmacogenet 14: 91–102

  28. 28.

    Keitel V et al (2006) Combined mutations of canalicular transporter proteins cause severe intrahepatic cholestasis of pregnancy. Gastroenterology 131: 624–629

  29. 29.

    Lang C et al (2007) Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury. Pharmacogenet Genomics 17: 47–60

  30. 30.

    Knisely AS et al (2006) Hepatocellular carcinoma in ten children under five years of age with bile salt export pump deficiency. Hepatology 44: 478–486

  31. 31.

    Pauli-Magnus C et al (2004) BSEP and MDR3 haplotype structure in healthy Caucasians, primary biliary cirrhosis and primary sclerosing cholangitis. Hepatology 39: 779–791

  32. 32.

    Oude Elferink RP, Paulusma CC (2007) Function and pathophysiological importance of ABCB4 (MDR3 P-glycoprotein). Pflügers Arch 453: 601–610

  33. 33.

    Davit-Spraul A et al (2009) Progressive familial intrahepatic cholestasis. Orphanet J Rare Dis 4: 1

  34. 34.

    Rosmorduc O, Poupon R (2007) Low phospholipid associated cholelithiasis: association with mutation in the MDR3/ABCB4 gene. Orphanet J Rare Dis 2: 29

  35. 35.

    Smith AJ et al (2000) MDR3 P-glycoprotein, a phosphatidylcholine translocase, transports several cytotoxic drugs and directly interacts with drugs as judged by interference with nucleotide trapping. J Biol Chem 275: 23530–23539

  36. 36.

    Buis CI et al (2009) Altered bile composition after liver transplantation is associated with the development of nonanastomotic biliary strictures. J Hepatol 50: 69–79

  37. 37.

    Su Y et al (2006) Clinical and molecular genetic analysis of a family with sitosterolemia and co-existing erythrocyte and platelet abnormalities. Haematologica 91: 1392–1395

  38. 38.

    Oram JF, Vaughan AM (2006) ATP-Binding cassette cholesterol transporters and cardiovascular disease. Circ Res 99: 1031–1043

  39. 39.

    Miettinen TA et al (2006) Liver transplantation in a patient with sitosterolemia and cirrhosis. Gastroenterology 130: 542–547

  40. 40.

    Kullak-Ublick GA, Meier PJ (2000) Mechanisms of cholestasis. Clin Liver Dis 4: 357–385

  41. 41.

    Jacquemin E et al (2001) The wide spectrum of multidrug resistance 3 deficiency: from neonatal cholestasis to cirrhosis of adulthood. Gastroenterology 120: 1448–1458

  42. 42.

    Strautnieks SS et al (2008) Severe bile salt export pump deficiency: 82 different ABCB11 mutations in 109 families. Gastroenterology 134: 1203–1214

  43. 43.

    Kullak-Ublick GA et al (2002) Expression of the hepatocyte canalicular multidrug resistance protein (MRP2) in primary biliary cirrhosis. Hepatol Res 23: 78–82

  44. 44.

    Beuers U (2006) Drug insight: Mechanisms and sites of action of ursodeoxycholic acid in cholestasis. Nat Clin Pract Gastroenterol Hepatol 3: 318–328

  45. 45.

    Paumgartner G, Pusl T (2008) Medical treatment of cholestatic liver disease. Clin Liver Dis 12: 53–80

  46. 46.

    Zollner G et al (2003) Role of nuclear bile acid receptor, FXR, in adaptive ABC transporter regulation by cholic and ursodeoxycholic acid in mouse liver, kidney and intestine. J Hepatol 39: 480–488

  47. 47.

    Modi BP et al (2007) Ileal exclusion for refractory symptomatic cholestasis in Alagille syndrome. J Pediatr Surg 42: 800–805

  48. 48.

    Bustorff-Silva J et al (2007) Partial internal biliary diversion through a cholecystojejunocolonic anastomosis–a novel surgical approach for patients with progressive familial intrahepatic cholestasis: a preliminary report. J Pediatr Surg 42: 1337–1340

  49. 49.

    Claudel T et al (2004) The farnesoid X receptor: a novel drug target? Expert Opin Investig Drugs 13: 1135–1148

  50. 50.

    Fickert P et al (2006) 24-norUrsodeoxycholic acid is superior to ursodeoxycholic acid in the treatment of sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology 130: 465–481

  51. 51.

    Yoon YB et al (1986) Effect of side-chain shortening on the physiologic properties of bile acids: hepatic transport and effect on biliary secretion of 23-nor-ursodeoxycholate in rodents. Gastroenterology 90: 837–852

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Correspondence to Prof. Dr. G.A. Kullak-Ublick.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mwinyi, J., Kullak-Ublick, G. Hereditäre Defekte hepatobiliärer Transportproteine. Gastroenterologe 5, 39–48 (2010). https://doi.org/10.1007/s11377-009-0345-8

Download citation

Schlüsselwörter

  • Cholestase
  • Transportproteine
  • Haplotypen
  • Nukleäre Rezeptoren
  • Cholelithiasis

Keywords

  • Cholestasis
  • Transport proteins
  • Haplotypes
  • Nuclear receptors
  • Gallstone disease