Journal of Biomedical Science

, Volume 15, Issue 1, pp 5–14 | Cite as

Aminoglycosides versus bacteria – a description of the action, resistance mechanism, and nosocomial battleground

  • Shazi Shakil
  • Rosina Khan
  • Raffaele Zarrilli
  • Asad U. Khan
Article

Abstract

Since 1944, we have come a long way using aminoglycosides as antibiotics. Bacteria also have got them selected with hardier resistance mechanisms. Aminoglycosides are aminocyclitols that kill bacteria by inhibiting protein synthesis as they bind to the 16S rRNA and by disrupting the integrity of bacterial cell membrane. Aminoglycoside resistance mechanisms include: (a) the deactivation of aminoglycosides by N-acetylation, adenylylation or O-phosphorylation, (b) the reduction of the intracellular concentration of aminoglycosides by changes in outer membrane permeability, decreased inner membrane transport, active efflux, and drug trapping, (c) the alteration of the 30S ribosomal subunit target by mutation, and (d) methylation of the aminoglycoside binding site. There is an alarming increase in resistance outbreaks in hospital setting. Our review explores the molecular understanding of aminoglycoside action and resistance with an aim to minimize the spread of resistance.

Keywords

aminoglycoside-modifying enzymes aminoglycoside resistance drug resistance hospital infection nosocomial infection resistance mechanism spread of resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akram M., Shahid M. and Khan A.U., Etiology and antibiotic resistance patterns of community-acquired urinary tract infections in J N M C Hospital Aligarh, India. Ann. Clin. Microbiol. Antimicrob. 6: 4, 2007Google Scholar
  2. 2.
    Khan A.U., Musharraf A. (2004) Plasmid-mediated multiple antibiotic resistance in Proteus mirabilis isolated from patients with urinary tract infection. Med. Sci. Monit. 10:CR598–602PubMedGoogle Scholar
  3. 3.
    Marra A.R., Wey S.B., Castelo A. et al., Nosocomial bloodstream infections caused by Klebsiella pneumoniae: impact of extended-spectrum β-lactamase (ESBL) production on clinical outcome in a hospital with high ESBL prevalence.␣BMC Infect. Dis. 6: 24 doi:10.1186/1471-2334-6-24, 2006
  4. 4.
    Liou G.F., Yoshizawa S., Courvalin P., Galimand M. (2006) Aminoglycosides resistance by ArmA-mediated ribosomal 16S methylation in human bacterial pathogens. J. Mol. Biol. 359:358–364PubMedCrossRefGoogle Scholar
  5. 5.
    Kotra L.P., Haddad J., Mobashery S. (2000) Aminoglycoside: perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob. Agents Chemother. 44:3249–3256PubMedCrossRefGoogle Scholar
  6. 6.
    Magnet S., Blanchard J.S. (2005) Molecular insights into aminoglycoside action and resistance. Chem. Rev. 105:477–497PubMedCrossRefGoogle Scholar
  7. 7.
    Nikaido H. (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67:593–656PubMedCrossRefGoogle Scholar
  8. 8.
    Taber H.W., Mueller J.P., Miller P.F., Arrow A.S. (1987) Bacterial uptake of aminoglycoside antibiotics. Microbiol. Rev. 51:439–457PubMedGoogle Scholar
  9. 9.
    Magnet S., Courvalin P., Lambert T. (2001) Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob. Agents Chemother. 45:3375–3380PubMedCrossRefGoogle Scholar
  10. 10.
    Moore R.A., DeShazer D., Reckseidler S., Weissman A., Woods D.E. (1999) Efflux-mediated aminoglycoside and macrolide resistance in Burkholderia pseudomallei. Antimicrob. Agents Chemother. 43:465–470PubMedGoogle Scholar
  11. 11.
    Magnet S., Smith T.A., Zheng R., Nordmann P., Blanchard J.S. (2003) Aminoglycoside resistance resulting from tight drug binding to an altered aminoglycoside acetyltransferase. Antimicrob. Agents Chemother. 47:1577–1583PubMedCrossRefGoogle Scholar
  12. 12.
    Menard R., Molinas C., Arthur M., Duval J., Courvalin P., Leclercq R. (1993) Overproduction of 3′-aminoglycoside phosphotransferase type I confers resistance to tobramycin in Escherichia coli. Antimicrob. Agents. Chemother. 37:78–83PubMedGoogle Scholar
  13. 13.
    Musser J.M. (1995) Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin. Microbiol. Rev. 8:496–514PubMedGoogle Scholar
  14. 14.
    Skeggs P.A., Thompson J., Cundliffe E. (1985) Methylation of 16 S ribosomal RNA and resistance to aminoglycoside antibiotics in clones of Streptomyces lividans carrying DNA from Streptomyces tenjimariensis. Mol. Gen. Genet. 200:415–421PubMedCrossRefGoogle Scholar
  15. 15.
    Cundliffe E. (1989) How antibiotic-producing organisms avoid suicide. Annu. Rev. Microbiol. 43:207–233PubMedCrossRefGoogle Scholar
  16. 16.
    Thompson J., Skeggs P.A., Cundliffe E. (1985) Methylation of 16 S ribosomal RNA and resistance to the aminoglycoside antibiotics gentamicin and kanamycin determined by DNA from the gentamicin producer, Micromonospora purpurea. Mol. Gen. Genet. 201:168–173PubMedCrossRefGoogle Scholar
  17. 17.
    Gilbert D.N. (1985) Aminoglycosides. In: Mandell GL, Bennett JE, Dolin R, (eds). Principles and Practice of Infectious Diseases. 4th ed. Churchill Livingstone, New York, NY, pp. 279–306Google Scholar
  18. 18.
    Mingeot-Leclercq M.P., Glupczynski Y., Tulkens P.M. (1999) Aminoglycosides: activity and resistance. Antimicrob. Agents Chemother. 43:727–737PubMedGoogle Scholar
  19. 19.
    Sakon J., Liao H.H., Kanikula A.M., Benning M.M., Rayment I., Holden H.M. (1993) Molecular structure of kanamycin nucleotidyl transferase determined to 3 Å resolution. Biochemistry 32:11977–11984PubMedCrossRefGoogle Scholar
  20. 20.
    Wybenga-Groot L.E., Draker K., Wright G.D., Berghuis A.M. (1999) Crystal structure of an aminoglycoside 6’-N-acetyltransferase: defining the GCN5-related N-acetyltransferase superfamily fold. Struct. Fold. Des. 7:497–507CrossRefGoogle Scholar
  21. 21.
    Burk D.L., Hon W.C., Leung A.K., Berghuis A.M. (2001) Structural analyses of nucleotide binding to an aminoglycoside phosphotransferase. Biochemistry 40:8756–8764PubMedCrossRefGoogle Scholar
  22. 22.
    Spelman D.W., McDonald M., Spice W.J. (1989) Aminoglycoside antibiotic agents: a review. Therapeutics 151:346–349Google Scholar
  23. 23.
    Hancock R.E., Farmer S.W., Li Z.S., Poole K. (1991) Interaction of aminoglycosides with the outer membranes and purified lipopolysaccharide and OmpF porin of E.␣coli. Antimicrob. Agents Chemother. 35:1309–1314PubMedGoogle Scholar
  24. 24.
    Bryan L.E., Kwan S. (1983) Roles of ribosomal binding, membrane potential, and electron transport in bacterial uptake of streptomycin and gentamicin. Antimicrob. Agents Chemother. 23:835–845PubMedGoogle Scholar
  25. 25.
    Ban N., Nissen P., Hansen J., Moore P.B., Steitz T.A. (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289:905–920PubMedCrossRefGoogle Scholar
  26. 26.
    Fourmy D., Yoshizawa S., Puglisi J.D. (1998) Paromomycin binding induces a local conformational change in the A-site of 16 S rRNA. J. Mol. Biol. 277:333–345PubMedCrossRefGoogle Scholar
  27. 27.
    Noller H.F. (1991) Ribosomal RNA and translation. Annu. Rev. Biochem. 60:191–227PubMedCrossRefGoogle Scholar
  28. 28.
    Fourmy D., Recht M.I., Blanchard S.C., Puglisi J.D. (1996) Structure of the A-site of E.␣coli. 16 S rRNA complexed with an aminoglycoside antibiotic. Science 274:1367–1371PubMedCrossRefGoogle Scholar
  29. 29.
    Recht M.I., Fourmy D., Blanchard S.C., Dahlquist K.D., Puglisi J.D. (1996) RNA sequence determinants for aminoglycoside binding to an A-site rRNA model oligonucleotide. J. Mol. Biol. 262:421–436PubMedCrossRefGoogle Scholar
  30. 30.
    Cate J.H., Yusupov M.M., Yusupova G.Z., Earnest T.E., Noller H.F. (1999) X-ray crystal structure of 70S ribosome functional complexes. Science 285:2095–2104PubMedCrossRefGoogle Scholar
  31. 31.
    Jiang L., Patel D.J. (1998) Solution structure of the tobramycin-RNA aptamer complex. Nat. Struct. Biol. 5:769–774PubMedCrossRefGoogle Scholar
  32. 32.
    Xi H., Arya D.P. (2005) Recognition of triple helical nucleic acids by aminoglycosides. Curr. Med. Chem. Anticancer Agents 5:327–338PubMedCrossRefGoogle Scholar
  33. 33.
    Hermann T., Westhoff E. (1998) Saccharide-RNA recognition. Biopolymers 48:155–165PubMedCrossRefGoogle Scholar
  34. 34.
    Recht M.I., Douthwaite S., Puglisi J.D. (1999) Basis for prokaryotic specificity of action of aminoglycoside antibiotics. EMBO J 18:3133–3138PubMedCrossRefGoogle Scholar
  35. 35.
    Michael K., Wang H., Tor Y. (1999) Enhanced RNA binding of dimerized aminoglycosides. Bioorg. Med. Chem. 7:1361–1371PubMedCrossRefGoogle Scholar
  36. 36.
    Welch K.T., Virga K.G., Whittemore N.A., Ozen C., Wright E., Brown C.L., Lee R.E., Serpersu E.H. (2005) Discovery of non-carbohydrate inhibitors of aminoglycoside-modifying enzymes. Bioorg. Med. Chem. 13:6252–6363PubMedCrossRefGoogle Scholar
  37. 37.
    Cho J., Hamasaki K., Rando R.R. (1998) The binding site of a specific aminoglycoside binding RNA molecule. Biochemistry 37:4985–4992PubMedCrossRefGoogle Scholar
  38. 38.
    Pilch D.S., Kaul M., Barbieri C.M. (2005) Defining the basis for the specificity of aminoglycoside–rRNA recognition: a comparative study of drug binding to the A sites of Escherichia coli and human rRNA. J. Mol. Biol. 346:119–134PubMedCrossRefGoogle Scholar
  39. 39.
    Hayashi S.F., Norcia L.J., Seibel S.B., Silvia A.M. (1997) Structure activity relationships of hygromycin A and its analogs: protein synthesis inhibition activity in a cell free system. J. Antibiot. (Tokyo) 50:514–521Google Scholar
  40. 40.
    Hotta K., Zhu C.B., Ogata T., Sunada A., Ishikawa J., Mizuno S., Kondo S. (1996) Enzymatic 2’-N-acetylation of arbekacin and antibiotic activity of its product. J. Antibiot. (Tokyo) 49:458–464Google Scholar
  41. 41.
    Shaw K.J., Rather P.N., Hare R.S., Miller G.H. (1993) Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol. Rev. 57:138–163PubMedGoogle Scholar
  42. 42.
    Llano-Sotelo B., Azucena E.F., Kotra L.P., Mobashery S., Chow C.S. (2002) Aminoglycosides modified by resistance enzymes display diminished binding to the bacterial ribosomal aminoacyl-tRNA site. Chem. Biol. 9:455–463PubMedCrossRefGoogle Scholar
  43. 43.
    Mingeot-Leclercq M.-P., Glupczynski Y., Tulkens P.M. (1999) Aminoglycosides: activity and resistance. Antimicrob. Agents Chemother. 43:727–737PubMedGoogle Scholar
  44. 44.
    Vakulenko S.B., Donabedian S.M., Voskresenskiy A.M., Zervos M.J., Lerner S.A., Chow J.W. (2003) Multiplex PCR for detection of aminoglycoside resistance genes in enterococci. Antimicrob. Agents Chemother. 47(4):1423–1426PubMedCrossRefGoogle Scholar
  45. 45.
    Zarrilli R., Tripodi M., Di Popolo A. et al. (2005) Molecular epidemiology of high-level amino glycoside-resistant enterococci isolated from patients in a university hospital in southern Italy. J. Antimicrob. Chemother. 56:827–835PubMedCrossRefGoogle Scholar
  46. 46.
    Ahmed A.M., Shimamoto T. (2004) A plasmid-encoded class 1 integron carrying sat, a putative phosphoserine phosphatase gene and aadA2 from enterotoxigenic Escherichia coli O159 isolated in Japan. FEMS Microbiol. Lett. 235:243–248PubMedCrossRefGoogle Scholar
  47. 47.
    Rather P.N., Munayyer H., Mann P.A., Hare R.S., Miller G.H., Shaw K.J. (1992) Genetic analysis of bacterial acetyltransferases: identification of amino acids determining the specificities of the aminoglycoside 69-Nacetyltransferase-Ib and IIa proteins. J. Bacteriol. 174:3196–3203PubMedGoogle Scholar
  48. 48.
    Wu H.Y., Miller G.H., Blanco M.G, Hare RS, Shaw K.J. (1997) Cloning and characterization of an aminoglycoside 69-N-acetyltransferase gene from Citrobacter freundii which confers an altered resistance profile. Antimicrob. Agents Chemother. 41:2439–2447PubMedGoogle Scholar
  49. 49.
    Aires J.R., Kohler T., Nikaido H., Plesiat P. (1999) Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob. Agents Chemother. 43:2624–2628PubMedGoogle Scholar
  50. 50.
    Masuda N., Sakagawa E., Ohya S., Gotoh N., Tsujimoto H., Nishino T. (2000) Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM efflux pumps in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 44:3322–3327PubMedCrossRefGoogle Scholar
  51. 51.
    Westbrock-Wadman S., Sherman D.R., Hickey M.J. et al. (1999) Characterization of a Pseudomonas aeruginosa efflux pump contributing to aminoglycoside impermeability. Antimicrob. Agents Chemother. 43:2975–2983PubMedGoogle Scholar
  52. 52.
    Livermore D.M. (2002) Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin. Infect. Dis. 34:634–640PubMedCrossRefGoogle Scholar
  53. 53.
    Poole K. (2005) Efflux-mediated antimicrobial resistance. J. Antimicrob. Chemother. 56:20–51PubMedCrossRefGoogle Scholar
  54. 54.
    Maravic G. (2004) Macrolide resistance based on the Erm-mediated rRNA methylation. Curr. Drug Targets Infect. Disord. 4:193–202PubMedCrossRefGoogle Scholar
  55. 55.
    Doi Y., Yokoyama K., Yamane K. et al. (2004) Plasmid-mediated 16S rRNA methylase in Serratia marcescens conferring highlevel resistance to aminoglycosides. Antimicrob. Agents Chemother. 48:491–496PubMedCrossRefGoogle Scholar
  56. 56.
    Galimand M., Sabtcheva S., Courvalin P., Lambert T. (2005) Worldwide disseminated armA aminoglycoside resistance methylase gene is borne by composite transposon Tn1548. Antimicrob. Agents Chemother. 49:2949–2953PubMedCrossRefGoogle Scholar
  57. 57.
    Chow J.W. (2000) Aminoglycoside resistance in enterococci. Clin. Infect. Dis. 31:586–599PubMedCrossRefGoogle Scholar
  58. 58.
    Lester C.H., Frimodt-Moller N., Hammerum A.M. (2004) Conjugal transfer of aminoglycoside and macrolide resistance between Enterococcus faecium isolates in the intestine of streptomycin-treated mice. FEMS Microbiol. Lett. 235:385–389PubMedCrossRefGoogle Scholar
  59. 59.
    Tomita H., Pierson C., Lim S.K., Clewell D.B., Ike Y. (2002) Possible connection between a widely disseminated conjugative gentamicin resistance (pMG1-like) plasmid and the emergence of vancomycin resistance in Enterococcus faecium. J. Clin. Microbiol. 40:3326–3333PubMedCrossRefGoogle Scholar
  60. 60.
    Udo E.E., Al-Sweih N., John P., Jacob L.E., Mohanakrishnan S. (2004) Characterization of high-level aminoglycoside-resistant enterococci in Kuwait hospitals. Microb. Drug Resist. 10:139–145PubMedCrossRefGoogle Scholar
  61. 61.
    Campo R.D., Ruiz-Garbajosa P., Sanchez-Moreno M.P. et al. (2003) Antimicrobial resistance in recent fecal enterococci from healthy volunteers and food handlers in Spain: genes and phenotypes. Microb. Drug Resist. 9:47–60PubMedCrossRefGoogle Scholar
  62. 62.
    Donabedian S.M., Thal L.A., Hershberger E. et al. (2003) Molecular characterization of gentamicin-resistant enterococci in the United States: evidence of spread from animals to humans through food. J. Clin. Microbiol. 41:1109–1113PubMedCrossRefGoogle Scholar
  63. 63.
    Rybak L.P., Whitworth C.A. (2005) Ototoxicity: therapeutic opportunities. Drug Discov. Today 10:1313–1321PubMedCrossRefGoogle Scholar
  64. 64.
    Rougier F., Claude D., Maurin M., Maire P. (2004) Aminoglycoside nephrotoxicity. Curr. Drug Targets 4:153–162CrossRefGoogle Scholar
  65. 65.
    Peloquin C.A., Berning S.E., Nitta A.T., Simone P.M., Goble M., Huitt G.A., Iseman M.D., Cook J.L., Curran-Everett D. (2004) Aminoglycoside toxicity: daily versus thrice weekly dosing for treatment of mycobacterial diseases. Clin. Infect. Dis. 38:1538–1544PubMedCrossRefGoogle Scholar
  66. 66.
    Magnet S., Blanchard J.S. (2005) Molecular insights into aminoglycoside action and resistance. Chem. Rev. 105:477–497PubMedCrossRefGoogle Scholar

Copyright information

© National Science Council Taipei 2007

Authors and Affiliations

  • Shazi Shakil
    • 1
  • Rosina Khan
    • 1
  • Raffaele Zarrilli
    • 2
  • Asad U. Khan
    • 1
  1. 1.Interdisciplinary Biotechnology UnitAligarh Muslim UniversityAligarhIndia
  2. 2.Dipartimento di Scienze Mediche PreventiveUniversità di Napoli ‘Federico II’NaplesItaly

Personalised recommendations