Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Differences in osteoblast miRNA induced by cell binding domain of collagen and silicate-based synthetic bone

Summary

PerioGlas (PG) is an silicate-based (i.e. anorganic) material used for grafting periodontal osseous defects since the ninety whereas P-15 is an analog of the cell binding domain of collagen (i.e. organic material) that is successfully used in clinical trial to promote bone formation. However, how PG (i.e anorganic material) and P-15 (i.e. collagen) differentially alter osteoblast activity to promote bone formation is unknown. We therefore attempted to get more insight by using microRNA microarray techniques to investigate the translation process in osteoblasts differentially exposed to PG and P-15. We identified 3 up-regulated miRNA (i.e. mir-30b, mir-26a, mir-92) and 8 down-regulated miRNA (i.e. mir-337, mir-377, mir-25, mir-200b, mir-129, mir-373, mir-133b, mir-489). The data reported are, to our knowledge, the first study on translation regulation in osteoblatsts differentially exposed to cell binding domain of collagen and to silicate-based material. Both enhance the translation of several miRNA belonging to osteogenetic genes, but P-15 acts preferentially on homeobox genes.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Fetner A.E., Hartigan M.S., Low S.B. (1994) Periodontal repair using PerioGlas in nonhuman primates: clinical and histologic observations. Compendium 15: 932, 935–938

  2. 2.

    Karatzas S., Zavras A., Greenspan D., Amar S. (1999) Histologic observations of periodontal wound healing after treatment with PerioGlas in nonhuman primates. Int. J. Periodontics Restorative Dent. 19: 489–499

  3. 3.

    Cancian D.C., Hochuli-Vieira E., Marcantonio R.A., Garcia I.R., Jr. (2004) Utilization of autogenous bone, bioactive glasses, and calcium phosphate cement in surgical mandibular bone defects in Cebus apella monkeys. Int. J. Oral Maxillofac. Implants 19: 73–79

  4. 4.

    Johnson M.W., Sullivan S.M., Rohrer M., Collier M. (1997) Regeneration of peri-implant infrabony defects using PerioGlas: a pilot study in rabbits. Int. J. Oral Maxillofac. Implants 12: 835–839

  5. 5.

    Teofilo J.M., Brentegani L.G., Lamano-Carvalho T.L. (2004) Bone healing in osteoporotic female rats following intra-alveolar grafting of bioactive glass. Arch. Oral Biol. 49: 755–762

  6. 6.

    Zamet J.S., Darbar U.R., Griffiths G.S., Bulman J.S., Bragger U., Burgin W., Newman H.N. (1997) Particulate bioglass as a grafting material in the treatment of periodontal intrabony defects. J. Clin. Periodontol. 24: 410–418

  7. 7.

    Gatti A.M., Simonetti L.A., Monari E., Guidi S., Greenspan D. (2006) Bone augmentation with bioactive glass in three cases of dental implant placement. J. Biomater. Appl. 20: 325–339

  8. 8.

    Nevins M.L., Camelo M., Nevins M., King C.J., Oringer R.J., Schenk R.K., Fiorellini J.P. (2000) Human histologic evaluation of bioactive ceramic in the treatment of periodontal osseous defects. Int. J. Periodontics Restorative Dent. 20: 458–467

  9. 9.

    Bhatnagar R.S., Qian J.J., Gough C.A. (1997) The role in cell binding of a beta-bend within the triple helical region in collagen alpha 1 (I) chain: structural and biological evidence for conformational tautomerism on fiber surface. J. Biomol. Struct. Dyn. 14: 547–560

  10. 10.

    Qian J.J., Bhatnagar R.S. (1996) Enhanced cell attachment to anorganic bone mineral in the presence of a synthetic peptide related to collagen. J. Biomed. Mater. Res. 31: 545–554

  11. 11.

    Bhatnagar R.S., Qian J.J., Wedrychowska A., Sadeghi M., Wu Y.M., Smith N. (1999) Design of biomimetic habitats for tissue engineering with P-15, a synthetic peptide analogue of collagen. Tissue Eng. 5: 53–65

  12. 12.

    Yang X.B., Bhatnagar R.S., Li S., Oreffo R.O. (2004) Biomimetic collagen scaffolds for human bone cell growth and differentiation. Tissue Eng. 10: 1148–1159

  13. 13.

    Lallier T.E., Yukna R., St Marie S., Moses R. (2001) The putative collagen binding peptide hastens periodontal ligament cell attachment to bone replacement graft materials. J. Periodontol. 72: 990–997

  14. 14.

    Krauser J.T., Rohrer M.D., Wallace S.S. (2000) Human histologic and histomorphometric analysis comparing OsteoGraf/N with PepGen P-15 in the maxillary sinus elevation procedure: a case report. Implant. Dent. 9: 298–302

  15. 15.

    Yukna R., Salinas T.J., Carr R.F. (2002) Periodontal regeneration following use of ABM/P-1 5: a case report. Int. J. Periodontics Restorative Dent. 22: 146–155

  16. 16.

    Yukna R.A., Krauser J.T., Callan D.P., Evans G.H., Cruz R., Martin M. (2002) Thirty-six month follow-up of 25 patients treated with combination anorganic bovine-derived hydroxyapatite matrix (ABM)/cell-binding peptide (P-15) bone replacement grafts in human infrabony defects. I Clinical findings. J. Periodontol. 73: 123–128

  17. 17.

    Schilephake H. (2002) Bone growth factors in maxillofacial skeletal reconstruction. Int. J. Oral Maxillofac. Surg. 31: 469–484

  18. 18.

    Yukna R.A., Krauser J.T., Callan D.P., Evans G.H., Cruz R., Martin M. (2000) Multi-center clinical comparison of combination anorganic bovine-derived hydroxyapatite matrix (ABM)/cell binding peptide (P-15) and ABM in human periodontal osseous defects. 6-month results. J. Periodontol. 71: 1671–1679

  19. 19.

    Barboza E.P., de Souza R.O., Caula A.L., Neto L.G., Caula Fde O., Duarte M.E. (2002) Bone regeneration of localized chronic alveolar defects utilizing cell binding peptide associated with anorganic bovine-derived bone mineral: a clinical and histological study. J. Periodontol. 73: 1153–1159

  20. 20.

    Moss E.G. (2003) MicroRNAs in noncoding RNAs. In: Barciszewski J., Erdmann V. (Eds) Molecular Biology and Molecular Medicine. Landes Bioscience, Georgetown, pp. 98–114

  21. 21.

    Schmitter D., Filkowski J., Sewer A., Pillai R.S., Oakeley E.J., Zavolan M., Svoboda P., Filipowicz W. (2006) Effects of Dicer and Argonaute down-regulation on mRNA levels in human HEK293 cells. Nucleic Acids Res. 34(17): 4801–4815

  22. 22.

    Ambros V. (2003) MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 113:673–676

  23. 23.

    Sontheimer E.J., Carthew R.W. (2005) Silence from within: endogenous siRNAs and miRNAs. Cell. 122: 9–12

  24. 24.

    Zamore P.D. and Haley B., Ribo-gnome: the big world of small RNAs. Science 309: 1519–1524, 2005

  25. 25.

    Grishok A., Pasquinelli A.E., Conte D., Li N., Parrish S., Ha I., Baillie D.L., Fire A., Ruvkun G., Mello C.C. (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106: 23–34

  26. 26.

    Hutvagner G., McLachlan J., Pasquinelli A.E., Balint E., Tuschl T., Zamore P.D. (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293: 834–838

  27. 27.

    Ketting R.F., Fischer S.E., Bernstein E., Sijen T., Hannon G.J., Plasterk R.H. (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15: 2654–2659

  28. 28.

    Zhang H., Kolb F.A., Jaskiewicz L., Westhof E., Filipowicz W. (2004) Single processing center models for human Dicer and bacterial RNase III. Cell 118: 57–68

  29. 29.

    Vaquerizas J.M., Dopazo J., Díaz-Uriarte R. (2004) RDNMAD: web-based Diagnosis and Normalization for MicroArray Data. Bioinformatics 20(18): 3656–3658

  30. 30.

    Herrero J., D´ýaz-Uriarte R., Dopazo J. (2003) Gene expression data preprocessing. Bioinformatics 19(5): 655–656

  31. 31.

    Tusher V.G., Tibshirani R., Chu G. (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98(9): 5116–5121

  32. 32.

    Carinci F., Piattelli A., Degidi M., Palmieri A., Perrotti V., Scapoli L., Martinelli M., Laino G., Pezzetti F. (2006) Genetic effects of anorganic bovine bone (Bio-Oss) on osteoblast-like MG63 cells. Arch Oral Biol 51:154–163

  33. 33.

    Carinci F., Piattelli A., Guida L., Perrotti V., Laino G., Oliva A., Annunziata M., Palmieri A., Pezzetti F. (2006) Effects of Emdogain on osteoblast gene expression. Oral Dis 12:329–342

  34. 34.

    Carinci F., Palmieri A., Perrotti V., Piattelli A., Cenzi R., Brunell G., Martinelli M., Arlotti M., Pezzetti F. (2006) Genetic effects of Medpor on osteoblast-like cells. J Craniofac Surg 17:1243–1250

  35. 35.

    Yukna R.A., Callan D.P., Krauser J.T., Evans G.H., Aichelmann-Reidy M.E., Moore K., Cruz R., Scott J.B. (1998) Multi-center clinical evaluation of combination anorganic bovine-derived hydroxyapatite matrix (ABM)/cell binding peptide (P-15) as a bone replacement graft material in human periodontal osseous defects. 6-month results. J. Periodontol. 69: 655–663

  36. 36.

    Cheng H., Jiang W., Phillips F.M., Haydon R.C., Peng Y., Zhou L., Luu H.H., An N., Breyer B., Vanichakarn P., Szatkowski J.P., Park J.Y., He T.C. (2003) Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J. Bone Joint Surg. 85-A: 1544–1552

  37. 37.

    Clement-Jones M., Schiller S., Rao E., Blaschke R.J., Zuniga A., Zeller R., Robson S.C., Binder G., Glass I., Strachan T., Lindsay S., Rappold G.A. (2000) The short stature homeobox gene SHOX is involved in skeletal abnormalities in Turner syndrome. Hum. Molec. Genet. 9: 695–702

  38. 38.

    Caronia G., Goodman F.R., McKeown C.M.E., Scambler P.J., Zappavigna V. (2003) An I47L substitution in the HOXD13 homeodomain causes a novel human limb malformation by producing a selective loss of function. Development 130: 1701–1712

  39. 39.

    Goseki-Sone M., Orimo H., Iimura T., Miyazaki H., Oda K., Shibata H., Yanagishita M., Takagi Y., Watanabe H., Shimada T., Oida S. (1998) Expression of the mutant (1735T-DEL) tissue-nonspecific alkaline phosphatase gene from hypophosphatasia patients. J. Bone Miner. Res. 13: 1827–1834

Download references

Acknowledgments

This work was supported by grants from University of Ferrara, Italy (F.C.), PRIN 2005 prot. 2005067555-0002 (F.C.), Fondazione CARIFE (F.C.), Fondazione CARISBO (F.P.).

Author information

Correspondence to Francesco Carinci.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Palmieri, A., Pezzetti, F., Brunelli, G. et al. Differences in osteoblast miRNA induced by cell binding domain of collagen and silicate-based synthetic bone. J Biomed Sci 14, 777–782 (2007). https://doi.org/10.1007/s11373-007-9193-z

Download citation

Keywords

  • alloplastic material
  • allograft
  • miRNA
  • microarray
  • gene expression
  • gene profiling