Journal of Biomedical Science

, Volume 14, Issue 5, pp 617–628 | Cite as

Fibroblast-like cells derived from the gonadal ridges and dorsal mesenteries of human embryos as feeder cells for the culture of human embryonic germ cells



The establishment of optimal hEG culture systems is a major challenge for the field of embryonic germ cell research. It is important to find appropriate feeder cells to support the growth of hEG. The clinical application of human embryonic germ cells cultured on mouse-derived feeder cells is restricted, since human embryonic germ cells cultured on mouse-derived feeder cells are at risk of contamination by heterogeneous proteins or pathogens. In order to avoid this limitation, we have isolated and cultured three human embryonic fibroblast-like cell lines derived from the gonadal ridges and dorsal mesenteries of 5- to 10-week old embryos. These cells expressed basic fibroblast growth factor and leukemia inhibitory factor, both essential for the growth of human embryonic germ cells. We then used the mitomycin-inactivited human embryonic fibroblast-like cells as feeder cells to culture human embryonic germ cells derived from the gonadal ridges and dorsal mesenteries of 5- to 10-week old embryos. Of 21 human primordial germ cell cultures initiated, seven were continuously grown and split for 10 passages with normal and stable human karyotypes. These cells expressed markers characteristic of pluripotent stem cells, including alkaline phosphatase, stage-specific embryonic antigens (SSEA)-1, SSEA-3, SSEA-4, tumor related antigens (TRA)-1-60, TRA-1-81, and the POU transcription factor Octamer-4 (Oct-4). Moreover, the cells possessed the capacity to differentiate into all three primary germ layers (ectoderm, mesoderm, and endoderm). Therefore, we have successfully used the human embryonic fibroblast-like cells derived from gonadal ridges and dorsal mesenteries as feeder cells to culture proliferative, undifferentiated and pluripotent human embryonic germ cells.


Human embryonic fibroblast-like cells Human embryonic germ cells Cell culture Identification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thomson J.A., Itskovitz-Eldor J., Shapiro S.S., Waknitz M.A., Swiergiel J.J., Marshall V.S., Jones J.M. 1998 Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147PubMedCrossRefGoogle Scholar
  2. 2.
    Shamblott M.J., Axelman J., Wang S., Bugg E.M., Littlefield J.W., Donovan P.J., Blumenthal P.D., Huggins G.R., Gearhart J.D. 1998 Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl. Acad. Sci. U.S.A. 95: 13726–13731PubMedCrossRefGoogle Scholar
  3. 3.
    Turnpenny L., Brickwood S., Spalluto C.M., Piper K., Cameron I.T., Wilson D.I., Hanley N.A. 2003 Derivation of human embryonic germ cells: an alternative source of pluripotent stem cells. Stem Cells 21: 598–609PubMedCrossRefGoogle Scholar
  4. 4.
    Park J.H., Kim S.J., Lee J.B., Song J.M., Kim C.G., Roh S. II, Yoon H.S. 2004 Establishment of a human embryonic germ cell line and comparison with mouse and human embryonic stem cells. Mol. Cells 17(2): 309–315PubMedGoogle Scholar
  5. 5.
    Liu S., Liu H., Pan Y., Tang S., Xiong J., Hui N., Wang S., Qi Z., Li L. 2004 Human embryonic germ cells isolation from early stages of post-implantation embryos. Cell Tissue Res. 318: 525–531PubMedCrossRefGoogle Scholar
  6. 6.
    Shamblott M.J., Axelman J., Littlefield J.W., Blumenthal P.D., Huggins G.R., Cui Y., Cheng L., Gearhart J.D. 2001 Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. PNAS 98: 113–118PubMedCrossRefGoogle Scholar
  7. 7.
    Yoo S.J., Yoon B.S., Kim J.M., Song J.M., Roh S. II, You S., Yoon H.S. 2005 Efficient culture system for human embryonic stem cells using autologous human embryonic stem cell-derived feeder cells. Exp. Mol. Med. 37: 399–407PubMedGoogle Scholar
  8. 8.
    Chen S., Li D., Lv J., Zhou X., Qu J. 2002 RT-PCR-ELISA for quantitative detection of human FGF mRNA. Chin. J. Opt. Ophthal. 4: 222–225Google Scholar
  9. 9.
    Guo X., Cheng Q., Wang Y. 2001 Expression of endometrial leukaemia inhibitory factor gene in patients with unexplained infertility. Chin. J. Obstet. Gynecol. 36: 82–84Google Scholar
  10. 10.
    Humphrey R.K., Beattie G.M., Lopez A.D., Bucay N., King C.C., Firpo M.T., Rose-John S., Hayek A. 2004 Maintenance of pluripotency in human embryonic stem cells is STAT3 independent. Stem Cells 22: 522–530PubMedCrossRefGoogle Scholar
  11. 11.
    Amit M., Shariki C., Margulets V., Itskovitz-Eldor J. 2004 Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod. 70: 837–845PubMedCrossRefGoogle Scholar
  12. 12.
    Lee J.B., Song J.M., Lee J.E., Park J.H., Kim S.J., Kang S.M., Kwon J.N., Kim M.K., Roh S. II, Yoon H.S. 2004 Available human feeder cells for the maintenance of human embryonic stem cells. Reproduction 128: 727–735PubMedCrossRefGoogle Scholar
  13. 13.
    Amit M., Margulets V., Segev H., Shariki K., Laevsky I., Coleman R., Itskovitz-Eldor J. 2003 Human feeder layers for human embryonic stem cells. Biol. Reprod. 68: 2150–2156PubMedCrossRefGoogle Scholar
  14. 14.
    Takashima S., Ise H., Zhao P., Akaike T., Nikaido T. 2004 Human amniotic epithelial cells possess hepatocyte-like characteristics and functions. Cell Struct. Funct. 29: 73–84PubMedCrossRefGoogle Scholar
  15. 15.
    Matsui Y., Zsebo K., Hogan B.M. 1992 Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70: 841–847PubMedCrossRefGoogle Scholar
  16. 16.
    Resnick J.L., Bixler L.S., Cheng L., Donovan P.J. 1992 Long-term proliferation of mouse primordial germ cells in culture. Nature 359: 550–551PubMedCrossRefGoogle Scholar
  17. 17.
    Fujimoto T., Miyayama Y., Fuyuta M. 1977 The origin, migration and fine morphology of human primordial germ cells. Anat. Rec. 188:315–330PubMedCrossRefGoogle Scholar
  18. 18.
    Gondos B., Bhiraleus P., Hobel C.J. 1971 Ultrastructure observations on germ cells in human fetal ovaries. Am. J. Obstet. Gynecol. 110: 644–652PubMedGoogle Scholar
  19. 19.
    Gondos B., Hobel C.J. 1971 Ultrastructure of germ cell development in the human fetal testis. Z Zellforsch Mikrosk Anat 119: 1–20PubMedCrossRefGoogle Scholar
  20. 20.
    Goto T., Adjaye J., Rodeck C.H., Monk M. 1999 Identification of genes expressed in human primordial germ cells at the time of entry of the female germ line into meiosis. Mol. Hum. Reprod. 5: 851–860PubMedCrossRefGoogle Scholar
  21. 21.
    Hansis C., Grifo J.A., Krey L.C. 2000 Oct-4 Expression in inner cell mass and trophectoderm of human blastocysts. Mol. Hum. Reprod. 6: 999–1004PubMedCrossRefGoogle Scholar

Copyright information

© National Science Council Taipei 2007

Authors and Affiliations

  1. 1.Key Laboratory of Pathobiology, Ministry of EducationJilin UniversityChangchunP.R. China
  2. 2.Department of Obstetrics and Gynecology, First HospitalJilin UniversityChangchunP.R. China

Personalised recommendations