Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Modulation of liver X receptor signaling as novel therapy for prostate cancer

Abstract

Liver X receptors (LXRs) are important regulators of cholesterol, fatty acid, and glucose homeostasis. LXR agonists are effective for treatment of murine models of atherosclerosis, diabetes, and Alzheimer’s disease. Recently we observed that LXR agonists suppressed proliferation of prostate and breast cancer cells in vitro and treatment of mice with the LXR agonist T0901317 suppressed the growth of prostate tumor xenografts. LXR agonists appear to cause G1 cell cycle arrest in cells by reducing expression of Skp2 and inducing the accumulation of p27Kip. T0901317 induced expression of ATP-binding cassette transporter A1 (ABCA1) and delayed the progression of androgen-dependent human prostate tumor xenografts towards androgen-independency in mice. Phytosterols, the plant equivalent of mammalian cholesterol, have recently been shown to be agonists for LXRs. β-Sitosterol and campesterol, the two most common phytosterols, suppressed proliferation of prostate and breast cancer cells. The anticancer activity of phytosterols may be due to LXR signaling. This review examines the potential use of LXR signaling as a therapeutic target in prostate and other cancers.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Jemal A., Murray T., Ward E., Samuels A., Tiwari R.C., Ghafoor A., Feuer E.J., Thun M.J. (2005) Cancer statistics. CA Cancer J. Clin. 55: 10–30

  2. 2.

    Huggins C., Steven R.E., Hodges C.V. (1941) Studies on prostatic cancer. Arch. Sug. 43: 209–223

  3. 3.

    Hellerstedt B.A., Pienta K.J. (2002) The current state of hormonal therapy for prostate cancer. CA Cancer J. Clin. 52: 154–179

  4. 4.

    Sporer A., Brill D.R., Schaffner C.P. (1982) Epoxycholesterols in secretions and tissues of normal, benign, and cancerous human prostate glands. Urology 20: 244–250

  5. 5.

    Swinnen J.V., Roskams T., Joniau S., Van Poppel H., Oyen R., Baert L., Heyns W., Verhoeven G. (2002) Overexpression of fatty acid synthase is an early and common event in the development of prostate cancer. Int. J. Cancer 98: 19–22

  6. 6.

    Shurbaji M.S., Kalbfleisch J.H., Thurmond T.S. (1996) Immunohistochemical detection of a fatty acid synthase (OA-519) as a predictor of progression of prostate cancer. Hum. Pathol. 27: 917–921

  7. 7.

    Epstein J.I., Carmichael M., Partin A.W. (1995) OA-519 (fatty acid synthase) as an independent predictor of pathologic state in adenocarcinoma of the prostate. Urology 45: 81–86

  8. 8.

    Chuu C.-P., Hiipakka R.A., Kokontis J.M., Fukuchi J., Chen R.-Y., Liao S. (2006) Inhibition of tumor growth and progression of LNCaP prostate cancer cells in athymic mice by androgen and liver X receptor agonist. Cancer Res. 66: 6482–6486

  9. 9.

    Song C., Hiipakka R.A., Liao S. (2000) Selective activation of liver X receptor alpha by 6alpha-hydroxy bile acids and analogs. Steroids 65: 423–427

  10. 10.

    Song C., Hiipakka R.A., Liao S. (2001) Auto-oxidized cholesterol sulfates are antagonistic ligands of liver X receptors: implications for the development and treatment of atherosclerosis. Steroids 66: 473–479

  11. 11.

    Zelcer N., Tontonoz P. (2006) Liver X receptors as integrators of metabolic and inflammatory signaling. J. Clin. Invest. 116: 607–614

  12. 12.

    Li A.C., Glass C.K. (2004) PPAR- and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosis. J. Lipid. Res. 45: 2161–2173

  13. 13.

    Edwards P.A., Kennedy M.A., Mak P.A. (2002) LXRs; oxysterol-activated nuclear receptors that regulate genes controlling lipid homeostasis. Vascul. Pharmacol. 38: 249–256

  14. 14.

    Fukuchi J., Kokontis J.M., Hiipakka R.A., Chuu C.-P., Liao S. (2004) Antiproliferative effect of liver X receptor agonists on LNCaP human prostate cancer cells. Cancer Res. 64: 7686–7689

  15. 15.

    Awad A.B., Fink C.S. (2000) Phytosterols as anticancer dietary components: evidence and mechanism of action. J. Nutr. 130: 2127–2130

  16. 16.

    Plat J., Nichols J.A., Mensink R.P. (2005) Plant sterols and stanols: effects on mixed micellar composition and LXR (target gene) activation. J. Lipid Res. 46: 2468–2476

  17. 17.

    Apfel R., Benbrook D., Lernhardt E., Ortiz M.A., Salbert G., Pfahl M. (1994) A novel orphan receptor specific for a subset of thyroid hormone-responsive elements and its interaction with the retinoid/thyroid hormone receptor subfamily. Mol. Cell. Biol. 14: 7025–7035

  18. 18.

    Willy P.J., Umesono K., Ong E.S., Evans R.M., Heyman R.A., Mangelsdorf D.J. (1995) LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev. 9: 1033–1045

  19. 19.

    Song C., Kokontis J.M., Hiipakka R.A., Liao S. (1994) Ubiquitous receptor: a receptor that modulates gene activation by retinoic acid and thyroid hormone receptors. Proc. Natl. Acad. Sci. USA 91: 10809–10813

  20. 20.

    Shinar D.M., Endo N., Rutledge S.J., Vogel R., Rodan G.A., Schmidt A. (1994) NER, a new member of the gene family encoding the human steroid hormone nuclear receptor. Gene 147: 273–276

  21. 21.

    Teboul M., Enmark E., Li Q., Wikstrom A.C., Pelto-Huikko M., Gustafsson J.A. (1995) OR-1, a member of the nuclear receptor superfamily that interacts with the 9-cis-retinoic acid receptor. Proc. Natl. Acad. Sci. USA 92: 2096–2100

  22. 22.

    Seol W., Choi H.S., Moore D.D. (1995) Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors. Mol. Endocrinol. 9: 72–85

  23. 23.

    Le Beau M.M., Song C., Davis E.M., Hiipakka R.A., Kokontis J.M., Liao S. (1995) Assignment of the human ubiquitous receptor gene (UNR) to 19q13.3 using fluorescence in situ hybridization. Genomics 26: 166–168

  24. 24.

    Song C., Hiipakka R.A., Kokontis J.M., Liao S. (1995) Ubiquitous receptor: structures, immunocytochemical localization, and modulation of gene activation by receptors for retinoic acids and thyroid hormones. Ann. NY Acad. Sci. 761: 38–49

  25. 25.

    Janowski B.A., Willy P.J., Devi T.R., Falck J.R., Mangelsdorf D.J. (1996) An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature 383: 728–731

  26. 26.

    Forman B.M., Ruan B., Chen J., Schroepfer G.J. Jr., Evans R.M. (1997) The orphan nuclear receptor LXRalpha is positively and negatively regulated by distinct products of mevalonate metabolism. Proc. Natl. Acad. Sci. USA 94: 10588–10593

  27. 27.

    Lehmann J.M., Kliewer S.A., Moore L.B., Smith-Oliver T.A., Oliver B.B., Su J.L., Sundseth S.S., Winegar D.A., Blanchard D.E., Spencer T.A., Willson T.M. (1997) Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J. Biol. Chem. 272: 3137–3140

  28. 28.

    Song C., Liao S. (2000) Cholestenoic acid is a naturally occurring ligand for liver X receptor alpha. Endocrinology 141: 4180–4184

  29. 29.

    Schultz J.R., Tu H., Luk A., Repa J.J., Medina J.C., Li L., Schwendner S., Wang S., Thoolen M., Mangelsdorf D.J., Lustig K.D., Shan B. (2000) Role of LXRs in control of lipogenesis. Genes Dev. 14: 2831–2838

  30. 30.

    Collins J.L., Fivush A.M., Watson M.A., Galardi C.M., Lewis M.C., Moore L.B., Parks D.J., Wilson J.G., Tippin T.K., Binz J.G., Plunket K.D., Morgan D.G., Beaudet E.J., Whitney K.D., Kliewer S.A., Willson T.M. (2002) Identification of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines. J. Med. Chem. 45: 1963–1966

  31. 31.

    Song C., Liao S. (2001) Hypolipidemic effects of selective liver X receptor alpha agonists. Steroids 66: 673–681

  32. 32.

    Kaneko E., Matsuda M., Yamada Y., Tachibana Y., Shimomura I., Makishima M. (2003) Induction of intestinal ATP-binding cassette transporters by a phytosterol-derived liver X receptor agonist. J. Biol. Chem. 278: 36091–36098

  33. 33.

    Alberti S., Schuster G., Parini P., Feltkamp D., Diczfalusy U., Rudling M., Angelin B., Björkhem I., Pettersson S., Gustafsson J.A. (2001) Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXRbeta-deficient mice. J. Clin. Invest. 107: 565–573

  34. 34.

    Peet D.J., Turley S.D., Ma W., Janowski B.A., Lobaccaro J.M., Hammer R.E., Mangelsdorf D.J. (1998) Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 93: 693–704

  35. 35.

    Venkateswaran A., Laffitte B.A., Joseph S.B., Mak P.A., Wilpitz D.C., Edwards P.A., Tontonoz P. (2000) Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha. Proc. Natl. Acad. Sci. USA 97: 12097–12102

  36. 36.

    Nakamura K., Kennedy M.A., Baldan A., Bojanic D.D., Lyons K., Edwards P.A. (2004) Expression and regulation of multiple murine ATP-binding cassette transporter G1 mRNAs/isoforms that stimulate cellular cholesterol efflux to high density lipoprotein. J. Biol. Chem. 279: 45980–45989

  37. 37.

    Laffitte B.A., Repa J.J., Joseph S.B., Wilpitz D.C., Kast H.R., Mangelsdorf D.J., Tontonoz P. (2001) LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc. Natl. Acad. Sci. USA 98: 507–512

  38. 38.

    Li A.C., Glass C.K. (2004) PPAR- and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosis. J. Lipid. Res. 45: 2161–2173

  39. 39.

    Joseph S.B., McKilligin E., Pei L., Watson M.A., Collins A.R., Laffitte B.A., Chen M., Noh G., Goodman J., Hagger G.N., Tran J., Tippin T.K., Wang X., Lusis A.J., Hsueh W.A., Law R.E., Collins J.L., Willson T.M., Tontonoz P. (2002) Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc. Natl. Acad. Sci. USA 99: 7604–7609

  40. 40.

    Blaschke F., Leppanen O., Takata Y., Caglayan E., Liu J., Fishbein M.C., Kappert K., Nakayama K.I., Collins A.R., Fleck E., Hsueh W.A., Law R.E., Bruemmer D. (2004) Liver X receptor agonists suppress vascular smooth muscle cell proliferation and inhibit neointima formation in balloon-injured rat carotid arteries. Circ. Res. 95: e110–e123

  41. 41.

    Repa J.J., Liang G., Ou J., Bashmakov Y., Lobaccaro J.M., Shimomura L., Shan B., Brown M.S., Goldstein J.L., Mangelsdorf D.J. (2000) Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev. 14: 2819–2830

  42. 42.

    Yoshikawa T., Shimano H., Amemiya-Kudo M., Yahagi N., Hasty A.H., Matsuzaka T., Okazaki H., Tamura Y., Iizuka Y., Ohashi K., Osuga J., Harada K., Gotoda T., Kimura S., Ishibashi S., Yamada N. (2001) Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter. Mol. Cell. Biol. 21: 2991–3000

  43. 43.

    Liang G., Yang J., Horton J.D., Hammer R.E., Goldstein J.L., Brown M.S. (2002) Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. J. Biol. Chem. 277: 9520–9528

  44. 44.

    Tobin K.A., Ulven S.M., Schuster G.U., Steineger H.H., Andresen S.M., Gustafsson J.A., Nebb H.I. (2002) Liver X receptors as insulin-mediating factors in fatty acid and cholesterol biosynthesis. J. Biol. Chem. 277: 10691–10697

  45. 45.

    Chen G., Liang G., Ou J., Goldstein J.L., Brown M.S. (2004) Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proc. Natl. Acad. Sci. USA 101: 11245–11250

  46. 46.

    Laffitte B.A., Chao L.C., Li J., Walczak R., Hummasti S., Joseph S.B., Castrillo A., Wilpitz D.C., Mangelsdorf D.J., Collins J.L., Saez E., Tontonoz P. (2003) Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proc. Natl. Acad. Sci. USA 100: 5419–5424

  47. 47.

    Efanov A.M., Sewing S., Bokvist K., Gromada J. (2004) Liver X receptor activation stimulates insulin secretion via modulation of glucose and lipid metabolism in pancreatic beta-cells. Diabetes 53: S75–S78

  48. 48.

    Cao G., Liang Y., Broderick C.L., Oldham B.A., Beyer T.P., Schmidt R.J., Zhang Y., Stayrook K.R., Suen C., Otto K.A., Miller A.R., Dai J., Foxworthy P., Gao H., Ryan T.P., Jiang X.C., Burris T.P., Eacho P.I., Etgen G.J. (2003) Antidiabetic action of a liver x receptor agonist mediated by inhibition of hepatic gluconeogenesis. J. Biol. Chem. 278: 1131–1136

  49. 49.

    Joseph S.B., Castrillo A., Laffitte B.A., Mangelsdorf D.J., Tontonoz P. (2003) Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat. Med. 9: 213–219

  50. 50.

    Peng D., Song C., Reardon C.A., Liao S., Getz G.S. (2003) Lipoproteins produced by ApoE−/− astrocytes infected with adenovirus expressing human ApoE. J. Neurochem. 86: 1391–1402

  51. 51.

    Wang L., Schuster G.U., Hultenby K., Zhang Q., Andersson S., Gustafsson J.A. (2002) Liver X receptors in the central nervous system: from lipid homeostasis to neuronal degeneration. Proc. Natl. Acad. Sci. USA 99: 13878–13883

  52. 52.

    Andersson S., Gustafsson N., Warner M., Gustafsson J.A. (2005) Inactivation of liver X receptor beta leads to adult-onset motor neuron degeneration in male mice. Proc. Natl. Acad. Sci. USA 102: 3857–3862

  53. 53.

    Koldamova R.P., Lefterov I.M., Staufenbiel M., Wolfe D., Huang S., Glorioso J.C., Walter M., Roth M.G., Lazo J.S. (2005) The liver X receptor ligand T0901317 decreases amyloid beta production in vitro and in a mouse model of Alzheimer’s disease. J. Biol. Chem. 280: 4079–4088

  54. 54.

    Horoszewicz J.S., Leong S.S., Chu T.M., Wajsman Z.L., Friedman M., Papsidero L., Kim U., Chai L.S., Kakati S., Arya S.K., Sandberg A.A. (1980) The LNCaP cell line – a new model for studies on human prostatic carcinoma. Prog. Clin. Biol. Res. 37: 115–132

  55. 55.

    Kaighn M.E., Narayan K.S., Ohnuki Y., Lechner J.F., Jones L.W. (1979) Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest. Urol. 17: 16–23

  56. 56.

    Stone K.R., Mickey D.D., Wunderli H., Mickey G.H., Paulson D.F. (1978) Isolation of a human prostate carcinoma cell line (DU 145). Int. J. Cancer 21: 274–281

  57. 57.

    Kokontis J., Takakura K., Hay N., Liao S. (1994) Increased androgen receptor activity and altered c-myc expression in prostate cancer cells after long-term androgen deprivation. Cancer Res. 54: 1566–1573

  58. 58.

    Kokontis J.M., Hay N., Liao S. (1998) Progression of LNCaP prostate tumor cells during androgen deprivation: hormone-independent growth, repression of proliferation by androgen, and role for p27Kip1 in androgen-induced cell cycle arrest. Mol. Endocrinol. 12: 941–953

  59. 59.

    Kokontis J.M., Hsu S., Chuu C.-P., Dang M., Fukuchi J., Hiipakka R.A., Liao S. (2005) Role of androgen receptor in the progression of human prostate tumor cells to androgen independence and insensitivity. Prostate 65: 287–298

  60. 60.

    Umekita Y., Hiipakka R.A., Kokontis J.M., Liao S. (1996) Human prostate tumor growth in athymic mice: inhibition by androgens and stimulation by finasteride. Proc. Natl. Acad. Sci. USA 93: 11802–11807

  61. 61.

    Chuu C.-P., Hiipakka R.A., Fukuchi J., Kokontis J.M., Liao S. (2005) Androgen causes growth suppression and reversion of androgen-independent prostate cancer xenografts to an androgen-stimulated phenotype in athymic mice. Cancer Res. 65: 2082–2084

  62. 62.

    Linja M.J., Savinainen K.J., Saramaki O.R., Tammela T.L., Vessella R.L., Visakorpi T. (2001) Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res. 61: 3550–3555

  63. 63.

    Ford O.H. 3rd, Gregory C.W., Kim D., Smitherman A.B., Mohler J.L. (2003) Androgen receptor gene amplification and protein expression in recurrent prostate cancer. J. Urol. 170: 1817–1821

  64. 64.

    Fukuchi J., Hiipakka R.A., Kokontis J.M., Hsu S., Ko A.L., Fitzgerald M.L., Liao S. (2004) Androgenic suppression of ATP-binding cassette transporter A1 expression in LNCaP human prostate cancer cells. Cancer Res. 64: 7682–7685

  65. 65.

    Fu X., Menke J.G., Chen Y., Zhou G., MacNaul K.L., Wright S.D., Sparrow C.P., Lund E.G. (2001) 27-hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells. J. Biol. Chem. 276: 38378–38387

  66. 66.

    Ettinger S.L., Sobel R., Whitmore T.G., Akbari M., Bradley D.R., Gleave M.E., Nelson C.C. (2004) Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence. Cancer Res. 64: 2212–2221

  67. 67.

    Heemers H., Maes B., Foufelle F., Heyns W., Verhoeven G., Swinnen J.V. (2001) Androgens stimulate lipogenic gene expression in prostate cancer cells by activation of the sterol regulatory element-binding protein cleavage activating protein/sterol regulatory element-binding protein pathway. Mol. Endocrinol. 15: 1817–1828

  68. 68.

    Oram J.F., Vaughan A.M. (2000) ABCA1-mediated transport of cellular cholesterol and phospholipids to HDL apolipoproteins. Curr. Opin. Lipidol. 11: 253–260

  69. 69.

    Freeman M.R., Cinar B., Lu M.L. (2005) Membrane rafts as potential sites of nongenomic hormonal signaling in prostate cancer. Trends Endocrinol. Metab. 16: 273–279

  70. 70.

    Kim J., Adam R.M., Solomon K.R., Freeman M.R. (2004) Involvement of cholesterol-rich lipid rafts in interleukin-6-induced neuroendocrine differentiation of LNCaP prostate cancer cells. Endocrinology 145: 613–619

  71. 71.

    Hazarika P., McCarty M.F., Prieto V.G., George S., Babu D., Koul D., Bar-Eli M., Duvic M. (2004) Up-regulation of Flotillin-2 is associated with melanoma progression and modulates expression of the thrombin receptor protease activated receptor 1. Cancer Res. 64: 7361–7369

  72. 72.

    Bared S.M., Buechler C., Boettcher A., Dayoub R., Sigruener A., Grandl M., Rudolph C., Dada A., Schmitz G. (2004) Association of ABCA1 with syntaxin 13 and flotillin-1 and enhanced phagocytosis in tangier cells. Mol. Biol. Cell 15: 5399–5407

  73. 73.

    Culig Z., Steiner H., Bartsch G., Hobisch A. (2005) Interleukin-6 regulation of prostate cancer cell growth. J. Cell Biochem. 95: 497–505

  74. 74.

    Chen T., Wang L.H., Farrar W.L. (2000) Interleukin 6 activates androgen receptor-mediated gene expression through a signal transducer and activator of transcription 3-dependent pathway in LNCaP prostate cancer cells. Cancer Res. 60: 2132–2135

  75. 75.

    Lee S.O., Lou W., Hou M., de Miguel F., Gerber L., Gao A.C. (2003) Interleukin-6 promotes androgen-independent growth in LNCaP human prostate cancer cells. Clin. Cancer Res. 9: 370–376

  76. 76.

    Lee S.O., Lou W., Johnson C.S., Trump D.L., Gao A.C. (2004) Interleukin-6 protects LNCaP cells from apoptosis induced by androgen deprivation through the Stat3 pathway. Prostate 60: 178–186

  77. 77.

    De Stefani E., Boffetta P., Ronco A.L., Brennan P., Deneo-Pellegrini H., Carzoglio J.C., Mendilaharsu M. (2000) Plant sterols and risk of stomach cancer: a case–control study in Uruguay. Nutr. Cancer 37: 140–144

  78. 78.

    Ronco A., De Stefani E., Boffetta P., Deneo-Pellegrini H., Mendilaharsu M., Leborgne F. (1999) Vegetables, fruits, and related nutrients and risk of breast cancer: a case–control study in Uruguay. Nutr. Cancer 35: 111–119

  79. 79.

    Mendilaharsu M., De Stefani E., Deneo-Pellegrini H., Carzoglio J., Ronco A. (1998) Phytosterols and risk of lung cancer: a case-control study in Uruguay. Lung Cancer 21: 37–45

  80. 80.

    McCann S.E., Ambrosone C.B., Moysich K.B., Brasure J., Marshall J.R., Freudenheim J.L., Wilkinson G.S., Graham S. (2005) Intakes of selected nutrients, foods, and phytochemicals and prostate cancer risk in western New York. Nutr. Cancer 53: 33–41

  81. 81.

    Awad A.B., Gan Y., Fink C.S. (2000) Effect of beta-sitosterol, a plant sterol, on growth, protein phosphatase 2A, and phospholipase D in LNCaP cells. Nutr. Cancer 36: 74–78

  82. 82.

    Awad A.B., Fink C.S., Williams H., Kim U. (2001) In vitro and in vivo (SCID mice) effects of phytosterols on the growth and dissemination of human prostate cancer PC-3 cells. Eur. J. Cancer Prev 10: 507–513

  83. 83.

    Ju Y.H., Clausen L.M., Allred K.F., Almada A.L., Helferich W.G. (2004) Beta-sitosterol, beta-sitosterol glucoside, and a mixture of beta-sitosterol and beta-sitosterol glucoside modulate the growth of estrogen-responsive breast cancer cells in vitro and in ovariectomized athymic mice. J. Nutr. 134: 1145–1151

  84. 84.

    Awad A.B., Downie A., Fink C.S., Kim U. (2000) Dietary phytosterol inhibits the growth and metastasis of MDA-MB-231 human breast cancer cells grown in SCID mice. Anticancer Res. 20: 821–824

  85. 85.

    Andersson S.W., Skinner J., Ellegard L., Welch A.A., Bingham S., Mulligan A., Andersson H., Khaw K.T. (2004) Intake of dietary plant sterols is inversely related to serum cholesterol concentration in men and women in the EPIC Norfolk population: a cross-sectional study. Eur. J. Clin. Nutr. 58: 1378–1385

  86. 86.

    Katan M.B., Grundy S.M., Jones P., Law M., Miettinen T., Paoletti R. (2003) Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. Mayo Clin. Proc. 78: 965–978

  87. 87.

    Plosch T., Kruit J.K., Bloks V.W., Huijkman N.C., Havinga R., Duchateau G.S., Lin Y., Kuipers F. (2006) Reduction of cholesterol absorption by dietary plant sterols and stanols in mice is independent of the Abcg5/8 transporter. J. Nutr. 136: 2135–2140

  88. 88.

    Yang C., Yu L., Li W., Xu F., Cohen J.C., Hobbs H.H. (2004) Disruption of cholesterol homeostasis by plant sterols. J. Clin. Invest. 114: 813–822

Download references

Acknowledgements

This study was supported by the US National Institute of Health grants CA58073 and a fund from Yen Chuang Foundation. We thank Rou-Yu Chen, Karen Warner, and Drs. Junichi Fukuchi, Ching Song, Dacheng Peng, and Stephen Hsu for helpful advice and discussion.

Author information

Correspondence to Shutsung Liao.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chuu, C., Kokontis, J.M., Hiipakka, R.A. et al. Modulation of liver X receptor signaling as novel therapy for prostate cancer. J Biomed Sci 14, 543–553 (2007). https://doi.org/10.1007/s11373-007-9160-8

Download citation

Keywords

  • LXR
  • LXR agonist
  • prostate cancer
  • prostate cancer progression
  • LNCaP
  • T0901317
  • phytosterol
  • cancer therapy