Journal of Biomedical Science

, Volume 14, Issue 3, pp 419–427 | Cite as

The fate of SPE B after internalization and its implication in SPEB-induced apoptosis

  • Chia-Wen Chang
  • Wan-Hua Tsai
  • Woei-Jer Chuang
  • Yee-Shin Lin
  • Jiunn-Jong Wu
  • Ching-Chuan Liu
  • Pei-Jane Tsai
  • Ming-T. Lin


After streptococcal pyrogenic exotoxin B (SPE B) induces apoptosis, its fate is unknown. Using confocal time-course microscopy at 37 °C, we detected green fluorescence 20 min after adding FITC-SPE B. Orange fluorescence, an indication of co-localization of SPE B with lysosomes which were labeled with a red fluorescent probe, was maximal at 40 min and absent by 60 min. SPE B was co-precipitated with clathrin, which is consistent with endocytotic involvement. Western blotting assay also indicated that uptake of SPE B was maximal at 40 min and disappeared after 60 min. However, in the presence of chloroquine, a lysosome inhibitor, the uptake of SPE B was not detectable. The disappearance of TCA-precipitated FITC-SPE B was parallel to the appearance of TCA soluble FITC-SPE B; in the presence of chloroquine, however, no SPE B degradation occurred. Chloroquine increased the level of SPE B-induced apoptosis by inhibiting the degradation of SPE B. These results suggest that the internalization and degradation of SPE B in cells may be a host defense system that removes toxic substances by sacrificing the exposed cells.


A549 cell apoptosis clathrin internalization SPE B 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vieira A.V., Lamaze C., Schmid S.L., Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274: 2086–2089, 1996PubMedCrossRefGoogle Scholar
  2. 2.
    Dikic I., Giordano S., Negative receptor signalling. Curr. Opin. Cell Biol. 15: 128–135, 2003PubMedCrossRefGoogle Scholar
  3. 3.
    Duckworth W.C., Insulin degradation: mechanisms, products, and significance. Endocr. Rev. 9: 319–345, 1988PubMedCrossRefGoogle Scholar
  4. 4.
    Gorden P, Carpentier J.L., Fan J.Y., Orci L., Receptor mediated endocytosis of polypeptide hormones: mechanism and significance. Metabolism 31: 664–669, 1982PubMedCrossRefGoogle Scholar
  5. 5.
    Holler D., Dikic I., Receptor endocytosis via ubiquitin-dependent and -independent pathways. Biochem. Pharmacol. 67: 1013–1017, 2004PubMedCrossRefGoogle Scholar
  6. 6.
    Burke P., Schooler K., Wiley H.S., Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking. Mol. Biol. Cell 12: 1897–1910, 2001PubMedGoogle Scholar
  7. 7.
    Futter C.E., Pearse A., Hewlett L.J., Hopkins C.R., Multivesicular endosomes containing internalized EGF-EGF receptor complexes mature and then fuse directly with lysosomes. J. Cell Biol. 132: 1011–1023, 1996PubMedCrossRefGoogle Scholar
  8. 8.
    Re R.N., The intracrine hypothesis and intracellular peptide hormone action. Bioessays 25: 401–409, 2003PubMedCrossRefGoogle Scholar
  9. 9.
    Abrami L., Liu S., Cosson P., Leppla S.H., van der Goot F.G., Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J. Cell Biol. 160: 321–328, 2003PubMedCrossRefGoogle Scholar
  10. 10.
    Lord J.M., Smith D.C., Roberts L.M., Toxin entry: how bacterial proteins get into mammalian cells. Cell. Microbiol. 1: 85–91, 1999PubMedCrossRefGoogle Scholar
  11. 11.
    Sandvig K., van Deurs B., Transport of protein toxins into cells: pathways used by ricin, cholera toxin and Shiga toxin. FEBS Lett. 529: 49–53, 2002PubMedCrossRefGoogle Scholar
  12. 12.
    Torgersen M.L., Skretting G., van Deurs B., Sandvig K., Internalization of cholera toxin by different endocytic mechanisms. J. Cell. Sci. 114: 3737–3747, 2001PubMedGoogle Scholar
  13. 13.
    Holm S.E., Norrby A., Bergholm A.M., Norgren M., Aspects of pathogenesis of serious group A streptococcal infections in Sweden, 1988–1989. J. Infect. Dis. 166: 31–37, 1992PubMedGoogle Scholar
  14. 14.
    Lukomski S., Sreevatsan S., Amberg C., Reichardt W., Woischnik M., Podbielski A., Musser J.M., Inactivation of Streptococcus pyogenes extracellular cysteine protease significantly decreases mouse lethality of serotype M3 and M49 strains. J. Clin. Invest. 99: 2574–2580, 1997PubMedCrossRefGoogle Scholar
  15. 15.
    Wheeler M.C., Roe M.H., Kaplan E.L., Schlievert P.M., Todd J.K., Outbreak of group A streptococcus septicemia in children. Clinical, epidemiologic, and microbiological correlates. JAMA 266: 533–537, 1991PubMedCrossRefGoogle Scholar
  16. 16.
    Eriksson B.K., Andersson J., Holm S.E., Norgren M., Invasive group A streptococcal infections: T1M1 isolates expressing pyrogenic exotoxins A and B in combination with selective lack of toxin-neutralizing antibodies are associated with increased risk of streptococcal toxic shock syndrome. J. Infect. Dis. 180: 410–418, 1999PubMedCrossRefGoogle Scholar
  17. 17.
    Mascini E.M., Jansze M., Schellekens J.F., Musser J.M., Faber J.A., Verhoef-Verhage L.A., Schouls L., van Leeuwen W.J., Verhoef J., van Dijk H., Invasive group A streptococcal disease in the Netherlands: evidence for a protective role of anti-exotoxin A antibodies. J. Infect. Dis. 181: 631–638, 2000PubMedCrossRefGoogle Scholar
  18. 18.
    Kuo C.F., Wu J.J., Lin K.Y., Tsai P.J., Lee S.C., Jin Y.T., Lei H.Y., Lin Y.S., Role of streptococcal pyrogenic exotoxin B in the mouse model of group A streptococcal infection. Infect. Immun. 66: 3931–3935, 1998PubMedGoogle Scholar
  19. 19.
    Lukomski S., Montgomery C.A., Rurangirwa J., Geske R.S., Barrish J.P., Adams G.J., Musser J.M., Extracellular cysteine protease produced by Streptococcus pyogenes participates in the pathogenesis of invasive skin infection and dissemination in mice. Infect. Immun. 67: 1779–1788, 1999PubMedGoogle Scholar
  20. 20.
    Tsai W.H., Chang C.W., Chuang W.J., Lin Y.S., Wu J.J., Liu C.C., Chang W.T., Lin M.T., Streptococcal pyrogenic exotoxin B-induced apoptosis in A549 cells is mediated by a receptor- and mitochondrion-dependent pathway. Infect. Immun. 72: 7055–7062, 2004PubMedCrossRefGoogle Scholar
  21. 21.
    Chen C.Y., Luo S.C., Kuo C.F., Lin Y.S., Wu J.J., Lin M.T., Liu C.C., Jeng W.Y., Chuang W.J., Maturation processing and characterization of streptopain. J. Biol. Chem. 278: 17336–17343, 2003PubMedCrossRefGoogle Scholar
  22. 22.
    Kuo C.F., Wu J.J., Tsai P.J., Kao F.J., Lei H.Y., Lin M.T., Lin Y.S., Streptococcal pyrogenic exotoxin B induces apoptosis and reduces phagocytic activity in U937 cells. Infect. Immun. 67: 126–130, 1999PubMedGoogle Scholar
  23. 23.
    Lukomski S., Burns E.H., Wyde P.R. Jr., Podbielski A., Rurangirwa J., Moore-Poveda D.K., Musser J.M., Genetic inactivation of an extracellular cysteine protease (SpeB) expressed by Streptococcus pyogenes decreases resistance to phagocytosis and dissemination to organs. Infect. Immun. 66: 771–776, 1998PubMedGoogle Scholar
  24. 24.
    Tsai P.J., Kuo C.F., Lin K.Y., Lin Y.S., Lei H.Y., Chen F.F., Wang J.R., Wu J.J., Effect of group A streptococcal cysteine protease on invasion of epithelial cells. Infect. Immun. 66: 1460–1466, 1998PubMedGoogle Scholar
  25. 25.
    Kapur V., Topouzis S., Majesky M.W., Li L.L., Hamrick M.R., Hamill R.J., Patti J.M., Musser J.M., A conserved Streptococcus pyogenes extracellular cysteine protease cleaves human fibronectin and degrades vitronectin. Microb. Pathog. 15: 327–346, 1993PubMedCrossRefGoogle Scholar
  26. 26.
    Kapur V., Majesky M.W., Li L.L., Black R.A., Musser J.M., Cleavage of interleukin 1 beta (IL-1 beta) precursor to produce active IL-1 beta by a conserved extracellular cysteine protease from Streptococcus pyogenes. Proc. Natl. Acad. Sci. USA 90: 7676–7680, 1993PubMedCrossRefGoogle Scholar
  27. 27.
    Burns E.H., Marciel A.M. Jr., Musser J.M., Activation of a 66-kilodalton human endothelial cell matrix metalloprotease by Streptococcus pyogenes extracellular cysteine protease. Infect. Immun. 64: 4744–4750, 1996PubMedGoogle Scholar
  28. 28.
    Sandvig K., Grimmer S., Lauvrak S.U., Torgersen M.L., Skretting G., van Deurs B., Iversen T.G., Pathways followed by ricin and Shiga toxin into cells. Histochem. Cell Biol. 117: 131–141, 2002PubMedCrossRefGoogle Scholar
  29. 29.
    Herreros J., Ng T., Schiavo G., Lipid rafts act as specialized domains for tetanus toxin binding and internalization into neurons. Mol. Biol. Cell 12: 2947–2960, 2001PubMedGoogle Scholar
  30. 30.
    Herkert M., Shakhman O., Schweins E., Becker C.M., Beta-bungarotoxin is a potent inducer of apoptosis in cultured rat neurons by receptor-mediated internalization. Eur. J. Neurosci. 14: 821–828, 2001PubMedCrossRefGoogle Scholar

Copyright information

© National Science Council Taipei 2007

Authors and Affiliations

  • Chia-Wen Chang
    • 1
    • 2
  • Wan-Hua Tsai
    • 1
    • 2
  • Woei-Jer Chuang
    • 1
    • 2
  • Yee-Shin Lin
    • 1
    • 3
  • Jiunn-Jong Wu
    • 1
    • 4
  • Ching-Chuan Liu
    • 5
  • Pei-Jane Tsai
    • 6
  • Ming-T. Lin
    • 6
  1. 1.Institute of Basic Medical SciencesNational Cheng Kung University Medical CollegeTainanTaiwan
  2. 2.BiochemistryNational Cheng Kung University Medical CollegeTainanTaiwan
  3. 3.Microbiology and ImmunologyNational Cheng Kung University Medical CollegeTainanTaiwan
  4. 4.Medical Laboratory Science and BiotechnologyNational Cheng Kung University Medical CollegeTainanTaiwan
  5. 5.Department of PediatricsNational Cheng Kung University Medical CollegeTainanTaiwan
  6. 6.Institute of Medical Sciences, School of MedicineTzu Chi UniversityHualienTaiwan

Personalised recommendations