Journal of Biomedical Science

, Volume 14, Issue 3, pp 313–322 | Cite as

Inhibition of corneal neovascularization with endostatin delivered by adeno-associated viral (AAV) vector in a mouse corneal injury model



The use of a recombinant adeno-associated viral (rAAV) vector carrying endostatin gene as an anti-angiogenesis strategy to treat corneal neovascularization in a mouse model was evaluated. Subconjunctival injection of recombinant endostatin-AAV was used to examine the inhibition of corneal neovascularization induced by silver nitrate cauterization in mice. The results showed that gene expression in corneal tissue was observed as early as 4 days after gene transfer and stably lasted for over 8 months with minimal immune reaction. Subconjunctival injection of a high-titer rAAV-endostatin successfully inhibited neovascularization. Immunohistchemistry staining of CD 31 and endostatin showed that the treatment significantly inhibits angiogenesis in cornea. We concluded that the rAAV was capable of directly delivering genes to the ocular surface epithelium by way of subconjunctival injection and was able to deliver sustained, high levels of gene expression in vivo to inhibit angiogenesis.


adeno-associated viral (AAV) vector angiogenesis corneal neovascularization endostatin gene gene therapy ocular surface disease 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chang J.H., Gabison E.E., Kato T., Azar D.T. Corneal neovascularization. Curr. Opin. Ophthalmol. 12: 242–249, 2001PubMedCrossRefGoogle Scholar
  2. 2.
    Hill J.C., Maske R. An animal model for corneal graft rejection in high-risk keratoplasty. Transplantation 46: 26–30, 1988PubMedCrossRefGoogle Scholar
  3. 3.
    BenEzra D., Griffin B.W., Maftzir G., Sharif N.A., Clark A.F. Topical formulations of novel angiostatic steroids inhibit rabbit corneal neovascularization. Invest. Ophthalmol. Vis. Sci. 38: 1954–1962, 1997PubMedGoogle Scholar
  4. 4.
    Boneham G.C., Collin H.B. Steroid inhibition of limbal blood and lymphatic vascular cell growth. Curr. Eye Res. 14: 1–10, 1995PubMedGoogle Scholar
  5. 5.
    Suzuki T., Sano Y., Kinoshita S. Effects of 1alpha,25-dihydroxyvitamin D3 on Langerhans cell migration and corneal neovascularization in mice. Invest. Ophthalmol. Vis. Sci. 41: 154–158, 2000PubMedGoogle Scholar
  6. 6.
    Dana M.R., Zhu S.N., Yamada J. Topical modulation of interleukin-1 activity in corneal neovascularization. Cornea 17: 403–409, 1998PubMedCrossRefGoogle Scholar
  7. 7.
    Benelli U., Ross J.R., Nardi M., Klintworth G.K. Corneal neovascularization induced by xenografts or chemical cautery. Inhibition by cyclosporin A. Invest. Ophthalmol. Vis. Sci. 38: 274–282, 1997PubMedGoogle Scholar
  8. 8.
    Duenas Z., Torner L., Corbacho A.M., Ochoa A., Gutierrez-Ospina G., Lopez-Barrera F., Barrios F.A., Berger P., Martinez de la Escalera G., Clapp C. Inhibition of rat corneal angiogenesis by 16-kDa prolactin and by endogenous prolactin-like molecules. Invest. Ophthalmol. Vis. Sci. 40: 2498–2505, 1999PubMedGoogle Scholar
  9. 9.
    Gordon Y.J., Mann R.K., Mah T.S., Gorin M.B. Fluorescein-potentiated argon laser therapy improves symptoms and appearance of corneal neovascularization. Cornea 21: 770–773, 2002PubMedCrossRefGoogle Scholar
  10. 10.
    Fossarello M., Peiretti E., Zucca I., Serra A. Photodynamic therapy of corneal neovascularization with verteporfin. Cornea 22: 485–488, 2003PubMedCrossRefGoogle Scholar
  11. 11.
    Tsai R.J., Li L.M., Chen J.K. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N. Engl. J. Med. 343: 86–93, 2000PubMedCrossRefGoogle Scholar
  12. 12.
    Ma D.H., Tsai R.J., Chu W.K., Kao C.H., Chen J.K. Inhibition of vascular endothelial cell morphogenesis in cultures by limbal epithelial cells. Invest. Ophthalmol. Vis. Sci. 40: 1822–1828, 1999PubMedGoogle Scholar
  13. 13.
    Ambati B.K., Joussen A.M., Ambati J., Moromizato Y., Guha C., Javaherian K., Gillies S., O’Reilly M.S, Adamis A.P. Angiostatin inhibits and regresses corneal neovascularization. Arch. Ophthalmol. 120: 1063–1068, 2002PubMedGoogle Scholar
  14. 14.
    Joussen A.M., Beecken W.D., Moromizato Y., Schwartz A., Kirchhof B., Poulaki V. Inhibition of inflammatory corneal angiogenesis by TNP-470. Invest. Ophthalmol. Vis. Sci. 42: 2510–2516, 2001PubMedGoogle Scholar
  15. 15.
    Kenyon B.M., Browne F., D’Amato R.J. Effects of thalidomide and related metabolites in a mouse corneal model of neovascularization. Exp. Eye Res. 64: 971–978, 1997PubMedCrossRefGoogle Scholar
  16. 16.
    Cursiefen C., Rummelt C., Kuchle M. Immunohistochemical localization of vascular endothelial growth factor, transforming growth factor alpha, and transforming growth factor beta1 in human corneas with neovascularization. Cornea 19: 526–533, 2000PubMedCrossRefGoogle Scholar
  17. 17.
    Amano S., Rohan R., Kuroki M., Tolentino M., Adamis A.P. Requirement for vascular endothelial growth factor in wound- and inflammation-related corneal neovascularization. Invest. Ophthalmol. Vis. Sci. 39: 18–22, 1998PubMedGoogle Scholar
  18. 18.
    Folkman J. New perspectives in clinical oncology from angiogenesis research. Eur. J. Cancer 32A: 2534–2539, 1996PubMedCrossRefGoogle Scholar
  19. 19.
    Ma H.I., Lin S.Z., Chiang Y.H., Li J., Chen S.L., Tsao Y.P., Xiao X. Intratumoral gene therapy of malignant brain tumor in a rat model with angiostatin delivered by adeno-associated viral (AAV) vector. Gene Ther. 9: 2–11, 2002PubMedCrossRefGoogle Scholar
  20. 20.
    Liekens S., De Clercq E., Neyts J. Angiogenesis: regulators and clinical applications. Biochem. Pharmacol. 61: 253–270, 2001PubMedCrossRefGoogle Scholar
  21. 21.
    O’Reilly M.S., Boehm T., Shing Y., Fukai N., Vasios G., Lane W.S., Flynn E.B., Birkhead J.R., Olsen B.R., Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88: 277–285, 1997PubMedCrossRefGoogle Scholar
  22. 22.
    Hansma A.H., Broxterman H.J., van der Horst I., Yuana Y., Boven E., Giaccone G., Pinedo H.M., Hoekman K. Recombinant human endostatin administered as a 28 day continuous intravenous infusion, followed by daily subcutaneous injections: a phase 1 and pharmacokinetic study in patients with advanced cancer. Ann. Oncol. 16: 1695–1701, 2005PubMedCrossRefGoogle Scholar
  23. 23.
    Liang Z.H., Wu P.H., Li L., Xue G., Zeng Y.X., Huang W.L. Inhibition of tumor growth in xenografted nude mice with adenovirus-mediated endostatin gene comparison with recombinant endostatin protein. Chin. Med. J. 117: 1809–1814, 2004PubMedGoogle Scholar
  24. 24.
    Luo X., Stater J.M., Gridley D.S. Enhancement of radiation effects by pXLG-mEndo in a lung carcinoma model. Int. J. Rad. Oncol. Biol. Phys. 63: 553–564, 2005CrossRefGoogle Scholar
  25. 25.
    Wu Y., Yang L., Hu B., Liu J.Y., Su K.M., Luo Y., Dino Z.Y., Niu T., Li Q., Xie X.J., Wen Y.J., Tian L., Kan B., Mao Y.Q., Wei Y.Q. Synergistic anti-tumor effect of recombinant human endostatin adenovirus combined with gemcitabine. Anti-Cancer Drugs 16: 551–557, 2005PubMedCrossRefGoogle Scholar
  26. 26.
    Uesato M., Gunji Y., Tomonaga T., Miyazaki S., Shiratori T., Matsubara H., Kouzu T., Shimada H., Nomura F., Ochiai T. Synergistic antitumor effect of antiangiogenic factor genes on colon 26 produced by low-voltage electroporation. Cancer Gene Ther 11: 625–632, 2004PubMedCrossRefGoogle Scholar
  27. 27.
    Kurdow R., Boehle A.S., Ruhnke M., Mendoza R., Boenicke L., Sipos B., Schniewind B., Dohrmann P., Kalthoff H.H. Retroviral endostatin gene transfer inhibits growth of human lung cancer in a murine orthotopic xenotransplant model. Langenbecks Arch. Surg. 388: 401–405, 2003PubMedCrossRefGoogle Scholar
  28. 28.
    Kurosaka D., Yoshida K., Yasuda J., Yokoyama T., Kingetsu I., Yamaguchi N., Joh K., Matsushima M., Saito S., Yamada A. Inhibition of arthritis by systemic administration of endostatin in passive murine collagen induced arthritis. Ann. Rheum. Dis. 62: 677–679, 2003PubMedCrossRefGoogle Scholar
  29. 29.
    Jung S.P., Siegrist B., Hornick C.A., Wang Y.Z., Wade M.R., Anthony C.T., Woltering E.A. Effect of human recombinant Endostatin protein on human angiogenesis. Angiogenesis 5: 111–118, 2002PubMedCrossRefGoogle Scholar
  30. 30.
    Thomas J.P., Arzoomanian R.Z., Alberti D., Marnocha R., Lee F., Friedl A., Tstsch K., Dresen A., Geiger P., Pluda J., Fogler W., Schiller J.H., Wilding G. Phase I pharmacokinetic and pharmacodynamic study of recombinant human endostatin in patients with advanced solid tumors. J. Clin. Oncol. 21: 223–231, 2003PubMedCrossRefGoogle Scholar
  31. 31.
    Ren B., Hoti N., Rabasseda X., Wang Y.Z., Wu M. The antiangiogenic and therapeutic implications of endostatin. Methods Find Exp. Clin. Pharmacol. 25: 215–224, 2003PubMedCrossRefGoogle Scholar
  32. 32.
    Xiao X., Li J., Samulski R.J. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J. Virol. 70: 8098–8108, 1996PubMedGoogle Scholar
  33. 33.
    Wang B., Li J., Xiao X. Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc. Natl. Acad. Sci. USA 97: 13714–13719, 2000PubMedCrossRefGoogle Scholar
  34. 34.
    Li J., Dressman D., Tsao Y.P., Sakamoto A., Hoffman E.P., Xiao X. rAAV vector-mediated sarcogylcan gene transfer in a hamster model for limb girdle muscular dystrophy. Gene Ther. 6: 74–82, 1999PubMedCrossRefGoogle Scholar
  35. 35.
    McCarty D.M., Monahan P.E., Samulski R.J. Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther. 8: 1248–1254, 2001PubMedCrossRefGoogle Scholar
  36. 36.
    Kaplitt M.G., Leone P., Samulski R.J., Xiao X., Pfaff D.W., O’Malley K.L., During M.J. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat. Genet. 8: 148–154, 1994PubMedCrossRefGoogle Scholar
  37. 37.
    Duan D., Sharma P., Yang J., Yue Y., Dudus L., Zhang Y., Fisher K.J., Engelhardt J.F. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J. Virol. 72: 8568–8577, 1998PubMedGoogle Scholar
  38. 38.
    Flotte T.R., Afione S.A., Zeitlin P.L. Adeno-associated virus vector gene expression occurs in nondividing cells in the absence of vector DNA integration. Am. J. Respir. Cell Mol. Biol. 11: 517–521, 1994PubMedGoogle Scholar
  39. 39.
    Xiao X., Li J., Samulski R.J. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol. 72: 2224–2232, 1998PubMedGoogle Scholar
  40. 40.
    Ma H.I., Guo P., Li J., Lin S.Z., Chiang Y.H., Xiao X., Cheng S.Y. Suppression of intracranial human glioma growth after intramuscular administration of an adeno-associated viral vector expressing angiostatin. Cancer Res. 62: 756–763, 2002PubMedGoogle Scholar
  41. 41.
    Tsai M.L., Chen S.L., Chou P.I., Wen L.Y., Tsai R.J.F., Tsao Y.P. Inducible adenoassociated virus vector-delivered transgene expression in corneal endothelium. Invest. Ophthalmol. Vis. Sci. 43: 751–757, 2002PubMedGoogle Scholar
  42. 42.
    Tsubota K., Inoue H., Ando K., Ono M., Yoshino K., Saito I. Adenovirus-mediated gene transfer to the ocular surface epithelium. Exp. Eye Res. 67: 531–538, 1998PubMedCrossRefGoogle Scholar
  43. 43.
    Lai C.M., Brankov M., Zaknich T., Lai Y.K., Shen W.Y., Constable I.J., Kovesdi I., Rakoczy P.E. Inhibition of angiogenesis by adenovirus-mediated sFlt-1 expression in a rat model of corneal neovascularization. Hum. Gene Ther. 12: 1299–1310, 2001PubMedCrossRefGoogle Scholar
  44. 44.
    Abdollahi A., Hlatky L., Huber P.E. Endostatin: the logic of antiangiogenic therapy. Drug Resist Updat 8: 59–74, 2005PubMedCrossRefGoogle Scholar
  45. 45.
    Auricchio A., Behling K.C., Maguire A.M., O’Connor E.M., Bennett J., Wilson J.M., Tolentino M.J. Inhibition of retinal neovascularization by intraocular viral-mediated delivery of anti-angiogenic agents. Mol. Ther. 6: 490–494, 2002PubMedCrossRefGoogle Scholar
  46. 46.
    Wang Z., Zhu T., Rehman K.K., Bertera S., Zhang J., Chen C., Papworth G., Watkins S., Trucco M., Robbins P.D., Li J., Xiao X. Widespread and stable pancreatic gene transfer by adeno-associated virus vectors via different routes. Diabetes 55: 875–884, 2006PubMedCrossRefGoogle Scholar
  47. 47.
    Berger A.C., Feldman A.L., Gnant M.F., Kruger E.A., Sim B.K., Hewitt S., Figg W.D., Alexander H.R., Libutti S.K. The angiogenesis inhibitor, endostatin, does not affect murine cutaneous wound healing. J. Surg. Res. 91: 26–31, 2000PubMedCrossRefGoogle Scholar
  48. 48.
    Wang Z., Zhu T., Qiao C., Zhou L., Wang B., Zhang J., Chen C., Li J., Xiao X. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat. Biotech. 23: 321–328, 2003CrossRefGoogle Scholar

Copyright information

© National Science Council Taipei 2007

Authors and Affiliations

  1. 1.Graduate Institute of Clinical Medical Sciences, College of MedicineChang Gung UniversityKwei San, Tao YuanTaiwan
  2. 2.Department of OphthalmologyChang Gung Memorial HospitalTaipeiTaiwan
  3. 3.Department of Molecular Genetics and BiochemistryUniversity of PittsburghPittsburghUSA
  4. 4.Department of Microbiology and Immunology, College of MedicineChang Gung UniversityKwei San, Tao YuanTaiwan

Personalised recommendations