Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Gene expression analysis in LLC-PK1 renal tubular cells by atrial natriuretic peptide (ANP): correlation of homologous human genes with renal response

Summary

We used human DNA microarray to explore the differential gene expression profiling of atrial natriuretic peptide (ANP)-stimulated renal tubular epithelial kidney cells (LLC-PK1) in order to understand the biological effect of ANP on renal kidney cell’s response. Gene expression profiling revealed 807 differentially expressed genes, consisting of 483 up-regulated and 324 down-regulated genes. The bioinformatics tool was used to gain a better understanding of differentially expressed genes in porcine genome homologous with human genome and to search the gene ontology and category classification, such as cellular component, molecular function and biological process. Four up-regulated genes of ATP1B1, H3F3A, ITGB1 and RHO that were typically validated by real-time quantitative PCR (RT-qPCR) analysis serve important roles in the alleviation of renal hypertrophy as well as other related effects. Therefore, the human array can be used for gene expression analysis in pig kidney cells and we believe that our findings of differentially expressed genes served as genetic markers and biological functions can lead to a better understanding of ANP action on the renal protective system and may be used for further therapeutic application.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Vesely D., Natriuretic peptides and acute renal failure. Am. J. Physiol. Renal Physiol. 285: F167–F177 (2003)

  2. 2.

    Baxter G.F., The natriuretic peptides. Basic Res. Cardiol. 99:71–75 (2004)

  3. 3.

    Sagnella G.A., Atrial natriuretic peptidemimetics and vasopeptidase inhibitors. Cardiovas. Res. 51: 416–428 (2001)

  4. 4.

    de los Angeles Costa M., Elesgaray R., Loria A., Balaszczuk A.M. and Arranz C., Atrial natriuretic peptide influence on nitric oxide system in kidney and heart. Regul. Pept. 118: 151–157 (2004)

  5. 5.

    Venugopal J., Cardiac natriuretic peptides-hope or hype. J. Clin. Pharm. Ther. 26: 15–31 (2001)

  6. 6.

    Antunes-Rodrigues J., De Castro M., Elias L.L.K., Valenca M.M. and McCann S.M., Neuroendocrine control of body fluid metabolism. Physiol. Rev. 84: 169–208 (2003)

  7. 7.

    Schmitt M., Cockcroft J.R. and Frenneaux M.P., Modulation of the natriuretic peptide system in heart failure: from bench to beside. Clin. Sci. 105: 141–160 (2003)

  8. 8.

    Anand-Srivastava M.B. (2005) Natriuretic receptor-C signaling and regulation. Peptides 26: 1044–1059 (2005)

  9. 9.

    Ozaki J., Shimizu H., Hashimoto Y., Itoh H., Nakao K. and Inui K.I., Enzymatic inactivation of major circulating forms of atrial and brain natriuretic peptides. Eur. J. Pharmacol. 370: 307–312 (1999)

  10. 10.

    Hannken T., Schroeder R., Stahl R.A.K. and Wolf G., Atrial natriuretic peptide attenuates ANG II-induced hypertrophy of renal tubular cells. Am. J. Physiol. Renal Physiol. 281: F81-F90 (2001)

  11. 11.

    Polte T., Hemmerle A., Berndt G., Grosser N., Abate A. and Schröder H., Atrial natriuretic peptide reduces cyclosporine toxicity in renal cells: role of cGMP and heme oxygenase-1. Free Rad. Biol. Med. 32:56–63 (2002)

  12. 12.

    Dudoit S., Yang Y.H., Speed T.P. and Callow M.J., Statistical methods for identifying genes with differential expression in replicated cDNA microarray experiments. Stat. Sin. 12: 111–139 (2002)

  13. 13.

    Yang Y.H., Dudoit S., Luu, P., Lin D.M., Peng V., Ngai J. and Speed T.P., Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 30:e15 (2002)

  14. 14.

    Broude N.E., Monastyrskaia G.S., Petrukhin K.E., Grishin A.V. and Kiiatkin N.I., Primary structure of the beta-subunit of Na+, K+-ATPase from the swine kidney: reverse transcription, cloning of mRNA, complete nucleotide sequence corresponding to the structural region of the gene. Bioorg. Khim. 13: 14–19 (1987)

  15. 15.

    Wells D. and Kedes L. (1985) Structure of a human histone cDNA: evidence that basally expressed histone genes have intervening sequences and encode polyadenylylated mRNAs. Proc. Natl. Acad. Sci. USA 82: 2834–2838 (1985)

  16. 16.

    Jimenez-Marin A., Garrido J.J., de Andres-Cara D.F., Morera L., Barbancho M.J. and Llanes D., Molecular cloning and characterization of the pig homologue to human CD29, the integrin beta1 subunit. Transplantation 70: 649–655 (2000)

  17. 17.

    Petters R.M., Alexander C.A., Wells K.D., Collins E.B., Sommer J.R., Blanton M.R., Rojas G., Hao Y., Flowers W.L., Banin E., Cideciyan A.V., Jacobson S.G. and Wong F. Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa. Nat. Biotechnol. 15: 965–970 (1997)

  18. 18.

    Wong S.K. and Garbers D.L. (1992) Receptor guanylyl cyclases. J. Clin. Invest. 90:299–305 (1992)

  19. 19.

    Drewett J.G. and Garbers D.L. (1994) The family of guanylyl cyclase receptors and their ligands. Endocr. Rev. 15: 135–162 (1994)

  20. 20.

    Spirgel A.M., Defects in G protein-coupled signal transduction in human disease. Annu. Rev. Physiol. 58: 143–170 (1995)

  21. 21.

    Metaye T., Gibelin H., Perdrisot R. and Kraimps J.L. (2005) Pathophysiological roles of G-protein-coupled receptor kinases. Cell Signal 17: 917–928 (2005)

  22. 22.

    Zhang Q., Moalem J., Tse J., Scholz P.M. and Weiss H.R., Effects of natriuretic peptides on ventricular myocyte contraction and role of cyclic GMP signaling. Eur. J. Pharmacol. 510: 209–215 (2005)

  23. 23.

    Suga S.S., Nakao K., Mukoyama M., Arai H., Hosoda K., Ogawa Y. and Imura H., Characterization of natriuretic peptide receptors in cultured cells. Hypertension 19: 762–765 (1992)

  24. 24.

    McKenna P.H., Khoury A.E., McLorie G.A., Reid G. and Churchill B.M., A surgical model for mormotensive chronic renal failure in the growing piglet. J. Urol. 148: 756–759 (1992)

  25. 25.

    Gladney C.D., Bertani G.R., Johnson R.K. and Pomp D., Evaluation of gene expression in pigs selected for enhanced reproduction using differential display PCR and human microarrays: I. ovarian follicles. J. Anim. Sci. 82: 17–31 (2004)

  26. 26.

    Shah G., Azizian M., Bruch D., Mehta R. and Kittur D., (2004) Cross-species comparison of gene expression between human and porcine tissue, using single microarray platform-preliminary results. Clin. Translant. 18: 76–80 (2004)

  27. 27.

    Shah G., Azizian M., Bruch D., Mehta R. And Kittur D., Cross-species comparison of gene expression between human and porcine tissue, using single microarray platform–preliminary results. Clin. Transplant. 18: 76–80 (2004)

  28. 28.

    Moody D.E., Zou Z. and McIntyre L., Cross-species hybridization of pig RNA to human nylon microarrays. BMC Genomics 3: 27–37 (2002)

  29. 29.

    Stewart JD, Luo Y., Squires E.J. and Coussens P.M., Using human microarrays to identify differentially expressed genes associated with increased steroidogenesis in boars. Anim. Biotechnol. 16:139–151 (2005)

  30. 30.

    Skou J.C., Enzymatic basis for active transport of Na and K across cell membrane. Physiol. Rev. 45: 596–617 (1965)

  31. 31.

    Lingrel J.B., Orlowski J., Shull M.M. and Price E.M. Molecular genetics of Na, K-ATPase. Prog. Nucleic Acid Res. Mol. Biol. 38:37–89 (1990)

  32. 32.

    Aperia A., Holtback U., Syren M.L., Svensson L.B., Fryckstedt J. and Greengard P., Activation/deactivation of renal Na+, K+-ATPase: a final common pathway for regulation of natriuresis. FASEB J. 8: 436–439 (1994)

  33. 33.

    Caruso-Neves C., Vives D., Dantas C., Albino C.M., Fonseca L.M., Lara L.S., Iso M., and Lopes A.G., Ousnbain-insensitive Na+-ATPase of proximal tubules is an effector for urodilatin and atrial natriuretic peptide. Biochim. Biophys. Acta 1660: 93–98 (2004)

  34. 34.

    Lin X. and Wells D.E., Localization of the human H3F3A histone gene to 1q41, outside of the normal histone gene clusters. Genomics 46: 526–528 (1997)

  35. 35.

    Frank D., Doenecke D. and Albig W., Differential expression of human replacement and cell cycle dependent H3 histone genes. Gene 312: 135–143 (2003)

  36. 36.

    Krimer D.B., Cheng G. and Skoultchi A.I., Induction of H3.3 replacement histone mRNAs during the precommitment period of murine erythroleukemia cell differentiation. Nucleic Acids Res. 21:2873–2879 (1993)

  37. 37.

    Shakibaei, M. and Mobasheri A., Beta1-integrins co-localize with Na, K-ATPase, epithelial sodium channels (ENaC) and voltage activated calcium channels (VACC) in mechanoreceptor complexes of mouse limb-bud chrondrocytes. Histol. Histopathol. 18: 343–351 (2003)

  38. 38.

    Schwartz M.A., Ingber D.E., Lawrance M., Springer T.A. and Lechene C., Multiple integrins share the ability to induce elevation of intracellular pH. Exp. Cell. Res. 195: 533–535 (1991)

  39. 39.

    Guan J.L., Trevithick J.E. and Hynes R.O., Fibronectin/integrin interaction induces tyrosine phosphorylation of a 120-kDa protein. Cell. Regul. 2: 951–964 (1991)

  40. 40.

    Xing Z., Chen H.C., Nowlen J.K., Taylor S.J., Shalloway D. and Guan J.L., Direct interaction of v-Src with the focal adhesion kinase mediated by the Src SH2 domain. Mol. Biol. Cell. 5: 413–421 (1994)

  41. 41.

    Giancotti F.G. and Ruoslahti E., Integrin signaling. Science 285: 1028–1032 (1999)

  42. 42.

    Kjoller L. and Hall A. (1999) Signaling to Rho GTPase. Exp. Cell. Res. 253: 166–179 (1999)

  43. 43.

    Clark, E.A., Brugge, J.S., Integrins and signal transduction pathways: the road taken. Science 268: 233–239 (1995)

  44. 44.

    Miyamoto S., Teramoto H., Coso O.A., Gutkind J.S., Burbelo P.D., Akiyama S.K. and Yamada K.M., Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J. Cell. Biol. 131: 791–805 (1995)

  45. 45.

    Parise L.V., Lee J.W. and Juliano R.L., New aspects of integrin signaling in cancer. Sem. Cancer Biol. 10: 407–414 (2000)

  46. 46.

    Jokinen J., Dadu E., Nykvist P., Kapyla J., White D.J., Ivaska J., Vehvilainen P., Reunanen H., Larjava H., Hakkinen L. and Heino J., Integrin-mediated cell adhesion to type I collagen fibrils. J. Biol. Chem. 279: 31956–31963 (2004)

  47. 47.

    Song G.B., Qin J., Luo Q., Shen X.D., Yan R.B. and Cai S.X., Adhesion of different cell cycle human hepatoma cells to endothelial cells and roles of integrin beta1. World J. Gastroenterol. 11:212–215 (2005)

  48. 48.

    Gal A., Apfelstedt-Sylla E., Janecke A.R. and Zrenner E., Rhodopsin mutations in inherited retinal dystrophies and dysfunctions. Prog. Ret. Eye Res. 16: 51–79 (1997)

  49. 49.

    Cideciyan A.V., Hood D.C., Huang Y., Banin E., Li Z.Y., Stone E.M., Milam A.H. and Jacobson S.G. (1998) Disease sequence from mutant rhodopsin allele to rod and come photoreceptor degeneration in man. Proc. Natl. Acad. Sci. USA 95: 7103–7108 (1998)

  50. 50.

    Andres A., Garriga P. and Manyosa J., Altered functionality in rhodopsin point mutants associated with retinitis pigmentosa. Biochim. Biophys. Res. Comm. 303: 294–301 (2003)

  51. 51.

    Sakmar T.P., Rhodopsin: a protypical G protein-coupled receptor. Prog. Nucleic Acids Res. Mol. Biol. 59: 1–34 (1998)

  52. 52.

    Rattner A., Sun H. and Nathans J., Molecular genetics of human retinal disease. Annu. Rev. Genet. 33: 89–131 (1999)

  53. 53.

    Sokal I., Alekseev A. and Palczewski K., Photoreceptor guanylate cyclase variants: cGMP production under control. Acta Biochim. Polonica 49: 1047–1095 (2003)

  54. 54.

    Yarfitz S. and Hurley J.B., Transduction mechanisms of vertebrate and invertebrate photoreceptors. J. Biol. Chem. 269:14329–14332 (1994)

  55. 55.

    Lucas K.A., Pitari G.M., Kazerounian S., Ruiz-Stewart I., Park J., Schulz S., Chepenik K.P. and Waldman S.A. (2000) Guanylyl cyclases and signaling by cyclic GMP. Pharmacol. Rev. 52: 375–414 (2000)

  56. 56.

    Schenk P.W. and Snaar-Jagalska B.E., Signal perception and transduction: the role of protein kinases. Biochim. Biophys. Acta 1449: 1–24 (1999)

Download references

Author information

Correspondence to Tsung-Han Lee.

Electronic supplementary material

Below are the electronic supplementary materials.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, R.H., Cheng, S., Ueng, K. et al. Gene expression analysis in LLC-PK1 renal tubular cells by atrial natriuretic peptide (ANP): correlation of homologous human genes with renal response. J Biomed Sci 14, 383–393 (2007). https://doi.org/10.1007/s11373-007-9152-8

Download citation

Keywords

  • atrial natriuretic peptide (ANP)
  • LLC-PK1 cells
  • gene expression
  • microarray