Journal of Biomedical Science

, Volume 13, Issue 6, pp 763–772 | Cite as

Fractionation and identification of 9c, 11t, 13t-conjugated linolenic acid as an activator of PPARα in bitter gourd (Momordica charantia L.)

  • Chia-Ying Chuang
  • Chin Hsu
  • Che-Yi Chao
  • Yung-Shung Wein
  • Yueh-Hsiung Kuo
  • Ching-jang Huang
Original Paper


Bitter gourd (Momordica charantia L.) is a common vegetable in Asia that has been used in traditional medicine for the treatment of Diabetes. PPARs are ligand-dependent transcription factors that belong to the steroid hormone nuclear receptor family and control lipid and glucose homeostasis in the body. We previously reported that the ethyl acetate (EA) extract of bitter gourd activated peroxisome proliferator receptors (PPARs) α and γ. To identify the active compound that activated PPARα, wild bitter gourd EA extract was partitioned between n-hexane and 90% methanol/10% H2O, and the n-hexane soluble fraction was further separated by silica gel column chromatography and finally by preparative HPLC. A transactivation assay employing a clone of CHOK1 cells stably transfected with a (UAS)4-tk-alkaline phosphatase reporter and a chimeric receptor of GAL4-rPPARα LBD was used to track the active component. Based on Mass, NMR, and IR spectroscopy, 9cis, 11trans, 13trans-conjugated linolenic acid (9c, 11t, 13t-CLN) was identified as a PPARα activator in wild bitter gourd. The isolated 9c, 11t, 13t-CLN rich fraction also significantly induced acyl CoA oxidase (ACO) activity in a peroxisome proliferator-responsive murine hepatoma cell line, H4IIEC3, implying that 9c, 11t, 13t-CLN was able to act on a natural PPARα signaling pathway as well. The content of 9c, 11t, 13t-CLN was estimated to be about 7.1 g/kg of our dried wild bitter gourd sample. The concentration of 9c, 11t, 13t-CLN and activation activity in the hydrolyzed EA extract of the seeds was higher than that of the flesh. The potential health benefits of 9c, 11t, 13t-CLN through the PPARα regulated mechanism are worthy to be further characterized in in vivo studies.


PPARα 9cis 11trans 13trans-conjugated linolenic acid wild bitter gourd transactivation assay Acyl CoA Oxidase 



Acyl CoA oxidase


Alkaline phosphatase


Conjugated linoleic acid


Conjugated linolenic acid


Ligand-binding domain


Peroxisome proliferators activated receptor


Peroxisome proliferators


Peroxisome proliferators responsive elements


Retinoic X receptor


Thin layer chromatography





This study was financially supported by a grant (NSC93-2317-B-002-010) from the National Science Council, Taiwan. We thank Mr. Jong-Ho Chuan of Hualien District Agricultural Research and Extension Station, Council of Agricultural, Executive Yuan, Taiwan, for providing wild bitter gourd samples and Mr. Yong-Yu Liao of Da-Chun Company for assistance with freeze-drying of samples.


  1. 1.
    Ahmed I., Adeghate E., Sharma A.K., Pallot D.J., Singh J. (1998). Effects of Momordica charantia fruit juice on islet morphology in the pancreas of the streptozotocin-diabetic rat. Diabetes. Res. Clin. Pract. 40:145–151PubMedCrossRefGoogle Scholar
  2. 2.
    Akhtar M.S., Athar M.A., Yaqub M. (1981). Effect of Momordica charantia on blood glucose level of normal and alloxan-diabetic rabbits. Planta. Med. 42:205–212PubMedGoogle Scholar
  3. 3.
    Anila L., Vijayalakshmi N.R. (2000) Beneficial effects of flavonoids from Sesamum indicum, Emblica officinalis and Momordica charantia. Phytother. Res. 14:592–595PubMedCrossRefGoogle Scholar
  4. 4.
    Belury M.A. (2002) Dietary conjugated linoleic acid in health: Physiological effects and mechanisms of action. Annu. Rev. Nutr. 22:505–531PubMedCrossRefGoogle Scholar
  5. 5.
    Berger J.P., Akiyama T.E., Meinke P.T. (2005) PPARs: therapeutic targets for metabolic disease. Trends. Pharmacol. Sci. 26:244–251PubMedCrossRefGoogle Scholar
  6. 6.
    Chao C.Y., Huang C.J. (2003). Bitter gourd (Momordica charantia) extract activates peroxisome proliferator-activated receptors and upregulates the expression of the acyl CoA oxidase gene in H4IIEC3 hepatoma cells. J. Biomed. Sci. 10:782–791PubMedGoogle Scholar
  7. 7.
    Chen Q., Chan L.L.Y., Li E.T.S. (2003). Bitter melon (Momordica charantia) reduces adiposity, lower serum insulin and normalizes glucose tolerance in rats fed a high fat diet. J. Nutr. 133:1088–1093PubMedGoogle Scholar
  8. 8.
    Dallongeville J., Bauge E., Tailleux A.., Peters J.M., Gonzalez F.J., Fruchart J.C., Staels B. (2001). Peroxisome proliferator-activated receptor alpha is not-limiting for the lipoprotein-lowering action of fish oil. J. Biol. Chem. 276:4634–4639PubMedCrossRefGoogle Scholar
  9. 9.
    Desvergne B., Wahli W. (1999). Peroxisome proliferator- activated receptors: Nuclear control of metabolism. Endocr. Rev. 206:49–688Google Scholar
  10. 10.
    Dhar P., Ghosh S., Bhattacharyya D.K. (1999). Dietary effects of conjugated octadecatrienoic fatty acid (9 cis, 11 trans, 13 trans) levels on blood lipids and nonenzymatic in vitro lipid peroxidation in rats. Lipids 34:109–114PubMedCrossRefGoogle Scholar
  11. 11.
    Grundy S.M. (1998). Hypertriglyceridemia, atherogenic dyslipidemia, and the metabolism syndrome. Am. J. Cardiol. 81:B18–25BCrossRefGoogle Scholar
  12. 12.
    Heim M., Johnson J., Boess F., Bendik I., Weber P., Hunziker W., Fluhmann B. (2002). Phytanic acid, a natural peroxisome proliferator-activated receptor (PPAR) agonist, regulates glucose metabolism in rat primary hepatocytes. FASEB 16:718–720Google Scholar
  13. 13.
    Higashino H., Suzuki A., Tanaka Y., Pootakham K. (1992). Hypoglycemic effects of Siamese Momordica charantia and Phyllanthus urinaria extracts in streptozotocin-induced diabetic rats. Nippon Yakurigaku Zasshi. 100:415–421PubMedGoogle Scholar
  14. 14.
    Huang T.H., Kota B.P., Razmovski V., Roufogalis B.D. (2005). Herbal or natural medicines as modulators of peroxisome proliferator-activated receptors and related nuclear receptors for therapy of metabolic syndrome. Basic Clin. Pharmacol. Toxicol. 96:3–14PubMedCrossRefGoogle Scholar
  15. 15.
    Jayasooriya A.P., Sakono M., Yukizaki C., Kawano M., Yamamoto K., Fukuda N. (2000). Effects of Momordica charantia powder on serum glucose levels and various lipid parameters in rats fed with cholesterol-free and cholesterol-enriched diets. J. Ethnopharmacol. 72:331–336PubMedCrossRefGoogle Scholar
  16. 16.
    Karunanayake E.H., Welihinda J., Sirimanne S.R., Sinnadorai G. (1984). Oral hypoglycemic activity of some medicinal plants of Sri Lanka. J. Ethnopharmacol. 11:223–231PubMedCrossRefGoogle Scholar
  17. 17.
    Kersten S., Desvergne B., Wahli W. (2000). Roles of PPARs in health and disease. Nature 405:421–424PubMedCrossRefGoogle Scholar
  18. 18.
    Khanna P., Jain S.C., Panagariya A., Dixit V.P. (1981). Hypoglycemic activity of polypeptide-P from a plant source. J. Nat. Prod. 44:648–655PubMedCrossRefGoogle Scholar
  19. 19.
    Koba K, Akahoshi A, Yamasaki M, Tanaka K, Yamada K, Iwata T, Kamegai T, Tsutsumi K, Sugano M. (2002). Dietary conjugated linolenic acid in relation to CLA differently modifies body fat mass and serum and liver lipid levels in rats. Lipids 37:631CrossRefGoogle Scholar
  20. 20.
    Kohno H., Suzuki R., Yasui Y., Hosokawa M., Miyashita K., Tanaka T. (2004) Pomegranate seed oil rich in conjugated linolenic acid suppresses chemically induced colon carcinogenesis in rats. Cancer Sci. 95:481–486PubMedCrossRefGoogle Scholar
  21. 21.
    Leatherdale B.A., Panesar R.K, Singh G., Atkins T.W., Bailey C.J., Bignell A.H.C. (1981). Improvement in glucose tolerance due to Momordica charantia (Karela). Br. Med. J. 282:1823–1824CrossRefGoogle Scholar
  22. 22.
    Lee C.H., Olson P., Evans R.M. (2003). Minireview: Lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 144:2201–2207PubMedCrossRefGoogle Scholar
  23. 23.
    Meir P., Yaniv Z. (1985). An in vitro study on the effects of Momordica charantia on glucose uptake and glucose metabolism in rats. Planta. Med. 51:12–16PubMedGoogle Scholar
  24. 24.
    Miura T., Itoh C., Iwamoto N., Kato M., Kawai M., Park S.R., Suzuki I. (2001). Hypoglycemic activity of the fruit of the Momordica charantia in type 2 diabetic mice. J. Nutr. Sci. Vitaminol. 47:340–344PubMedGoogle Scholar
  25. 25.
    Moya-Camarena S.Y., Vanden Heuvel J.P., Blanchard S.G., Leesnitzer L.A., Belury M.A. (1999). Conjugated linoleic acid is a potent naturally occurring ligand and activator of PPARα. J. Lipid Res. 40:1426–1433PubMedGoogle Scholar
  26. 26.
    Noguchi R., Yasui Y., Suzuki R., Hosokawa M., Fukunaga K., Miyashita K. (2001). Dietary effects of bitter gourd oil on blood and liver lipids of rats. Arch. Biochem. Biophys. 396:207–212PubMedCrossRefGoogle Scholar
  27. 27.
    Sarkar S., Pranava M., Marita R. (1996). Demonstration of the hypoglycemic action of Momordica charantia in a validated animal model of diabetes. Pharmacol. Res. 33:1–4PubMedCrossRefGoogle Scholar
  28. 28.
    Schoonjans K., Staels B., Auwerx J. (1996). Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J. Lipid. Res. 37:907–925PubMedGoogle Scholar
  29. 29.
    Senanayake G.V., Maruyama M., Shibuya K., Sakono M., Fukuda N., Morishita T., Yukizaki C., Kawano M, Ohta H. (2004). The effects of bitter melon (Momordica charantia) on serum and liver triglyceride levels in rats. J. Ethnopharmacol. 91:257–262PubMedCrossRefGoogle Scholar
  30. 30.
    Small G.M., Burdett K., Connock M.J. (1985). A sensitive spectrophotometric assay for peroxisomal acyl-CoA oxidase. Biochem. J. 227:205–210PubMedGoogle Scholar
  31. 31.
    Srivastava Y., Venkatakrishna-Bhatt H., Verma Y., Venkaiah K., Raval B.H. (1993). Antidiabetic and adaptogenic properties of Momordicacharantia extract: An experimental and clinical evaluation. Phytother. Res. 7:285–289CrossRefGoogle Scholar
  32. 32.
    Suzuki R., Arato S., Noguchi R., Miyashita K., Tachikawa O. (2001). Occurrence of conjugated linolenic acid in flesh and seed of bitter gourd. J. Oleo. Sci. 50:71–76Google Scholar
  33. 33.
    Takagi T., Itabashi Y. (1981). Occurrence of mixtures of geometrical isomers of conjugated octadecatrienoic acids in some seed oils: Analysis by open-tubular gas liquid chromatography and high performance liquid chromatography. Lipids 16:546–551CrossRefGoogle Scholar
  34. 34.
    Tsuzuki T., Tokuyama Y., Igarashi M., Nakagawa K., Ohsaki Y., Komai M., Miyazawa T. (2004). Alpha-eleostearic acid (9Z11E13E-18:3) is quickly converted to conjugated linoleic acid (9Z11E-18:2) in rats. J. Nutr. 134:2634–2639PubMedGoogle Scholar
  35. 35.
    Tsuzuki T., Igarashi M., Komai M., Miyazawa T. (2003). The metabolic conversion of 9,11,13-eleostearic acid (18:3) to 9,11-conjugated linoleic acid (18:2) in the rat. J. Nutr. Sci. Vitaminol. 49:195–200PubMedGoogle Scholar
  36. 36.
    Welihinda J., Karunanayake E.H. (1986) Extra pancreatic effects of Momordica charantia in rats. J. Ethnopharmacol. 17:247–255PubMedCrossRefGoogle Scholar
  37. 37.
    Willson T.M., Wahli W. (1997). Peroxisome proliferator-activated receptor agonists. Curr. Opin. Chem. Biol. 1:235–241PubMedCrossRefGoogle Scholar

Copyright information

© National Science Council Taipei 2006

Authors and Affiliations

  • Chia-Ying Chuang
    • 1
  • Chin Hsu
    • 1
  • Che-Yi Chao
    • 1
    • 2
  • Yung-Shung Wein
    • 3
  • Yueh-Hsiung Kuo
    • 3
    • 5
  • Ching-jang Huang
    • 1
    • 4
  1. 1.Nutritional Biochemistry Laboratory, Institute of Microbiology and BiochemistryNational Taiwan UniversityTapeiTaiwan
  2. 2.Department of Applied Life ScienceAsia UniversityTaichung CountyTaiwan
  3. 3.Department of ChemistryNational Taiwan UniversityTaipeiTaiwan
  4. 4.Department of Biochemical Science and TechnologyNational Taiwan UniversityTaipeiTaiwan
  5. 5.Institute of BioAgricultural Science, Academia SinicaTaipeiTaiwan

Personalised recommendations