Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Current perspectives in intronic micro RNAs (miRNAs)

Summary

MicroRNAs (miRNAs), small single-stranded regulatory RNAs capable of interfering with intracellular messenger RNAs (mRNAs) that contain either complete or partial complementarity, are useful for the design of new therapies against cancer polymorphism and viral mutation. Numerous miRNAs have been reported to induce RNA interference (RNAi), a post-transcriptional gene silencing mechanism. Intronic miRNAs, derived from introns by RNA splicing and Dicer processing, can interfere with intracellular mRNAs to silence that gene expression. The intronic miRNAs differ uniquely from previously described intergenic miRNAs in the requirement of type II RNA polymerases (Pol-II) and spliceosomal components for its biogenesis. Several kinds of intronic miRNAs have been identified in Caenorhabditis elegans, mouse and human cells; however, neither their function nor application has been reported. To this day, the computer searching program for miRNA seldom include the intronic portion of protein-coding RNAs. The functional significance of artificially generated intronic miRNAs has been successfully ascertained in several biological systems such as zebrafishes, chicken embryos and adult mice, indicating the evolutionary preservation of this gene regulation system in vivo. Multiple miRNAs can be generated from the same cluster of introns; however, non-homologous miRNAs may have different targets and functions while homologous miRNA may be derived from different intronic clusters. Taken together, the model of intronic miRNA-mediated transgenic animals provides a tool to investigate the mechanism of miRNA-associated diseases in␣vivo and will shed light on miRNA-related therapies.

References

  1. 1.

    Lin S.L., Chuong C.M., Ying S.Y. (2001) A Novel mRNA-cDNA interference phenomenon for silencing bcl-2 expression in human LNCaP cells. Biochem. Biophys. Res. Commun. 281: 639–644

  2. 2.

    Lin S.L., Chang D., Wu D.Y., Ying S.Y. (2003) A novel RNA splicing-mediated gene silencing mechanism potential for genome evolution. Biochem Biophys Res Commun. 310: 754–760

  3. 3.

    Ying S.Y., Lin S.L. (2004) Intron-derived microRNAs–fine tuning of gene functions. Gene 342: 25–28

  4. 4.

    Clement J.Q., Qian L., Kaplinsky N., Wilkinson M.F. (1999) The stability and fate of a spliced intron from vertebrate cells. RNA 5: 206–220

  5. 5.

    Ambros V., Lee R.C., Lavanway A., Williams P.T., Jewell D. (2003) MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol. 13: 807–818

  6. 6.

    Rodriguez A., Griffiths-Jones S., Ashurst J.L., Bradley A. (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res. 14: 1902–1910

  7. 7.

    Parrish S., Fleenor J., Xu S., Mello C., Fire A. (2000) Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. Mol. Cell 6: 1077–1087

  8. 8.

    Holen T., Amarzguioui M., Wiiger M.T., Babaie E., Prydz H. (2002) Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res. 30: 1757–1766

  9. 9.

    Hutvagner G., Zamore P.D. (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297: 2056–2060

  10. 10.

    Zeng Y., Yi R., Cullen B.R. (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc. Natl. Acad. Sci. USA 100: 9779–9784

  11. 11.

    Hall I.M., Shankaranarayana G.D., Noma K., Ayoub N., Cohen A., Grewal S.I. (2002). Establishment and maintenance of a heterochromatin domain. Science 297: 2232–2237

  12. 12.

    Llave C., Xie Z., Kasschau K.D., Carrington J.C. (2002). Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297: 2053–2056

  13. 13.

    Rhoades M.W., Reinhart B.J., Lim L.P., Burge C.B., Bartel B., Bartel D.P. (2002). Prediction of plant microRNA targets. Cell 110: 513–520

  14. 14.

    Lee R.C., Feibaum R.L., Ambros V. (1993). The C. elegans heterochromic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843–854

  15. 15.

    Reinhart B.J., Slack F.J., Basson M., Pasquinelli A.E., Bettinger J.C., Rougvie A.E., Horvitz H.R., Ruvkun G. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: 901–906

  16. 16.

    Lau N.C., Lim L.P., Weinstein E.G., Bartel D.P. (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294: 858–862

  17. 17.

    Brennecke J., Hipfner D.R., Stark A., Russell R.B., Cohen S.M.. (2003). Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113: 25–36

  18. 18.

    Xu P., Vernooy S.Y., Guo M., Hay B.A. (2003). The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol. 13: 790–795

  19. 19.

    Lagos-Quintana M., Rauhut R., Meyer J., Borkhardt A., Tuschl T. (2003). New microRNAs from mouse and human. RNA 9: 175–179

  20. 20.

    Mourelatos Z., Dostie J., Paushkin S., Sharma A., Charroux B., Abel L., Rappsilber J., Mann M., Dreyfuss G. (2002). miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 16: 720–728

  21. 21.

    Zeng Y., Wagner E.J., Cullen B.R. (2002). Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9: 1327–1333

  22. 22.

    Lin S.L., Chuong C.M., Ying S.Y. (2001). D-RNAi (messenger RNA-antisense DNA interference) as a novel defense system against cancer and viral infections. Curr. Cancer Drug Targets 1: 241–247

  23. 23.

    Carthew R.W. (2001). Gene silencing by double-stranded RNA. Curr Opin Cell Biol. 13: 244–248

  24. 24.

    Lee Y., Kim M., Han J., Yeom K.H., Lee S., Baek S.H., Kim V.N. (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23: 4051–4060

  25. 25.

    Lee Y., Ahn C., Han J., Choi H., Kim J., Yim J., Lee J., Provost P., Radmark O., Kim S., Kim V.N. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425: 415–419

  26. 26.

    Lund E., Guttinger S., Calado A., Dahlberg J.E., Kutay U. (2004). Nuclear export of microRNA precursors. Science 303: 95–98

  27. 27.

    Yi R., Qin Y., Macara I.G., Cullen B.R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17: 3011–3016

  28. 28.

    Schwarz D.S., Hutvagner G., Du T., Xu Z., Aronin N., Zamore P.D. (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell 115: 199–208

  29. 29.

    Khvorova A., Reynolds A., Jayasena S.D. (2003). Functional siRNAs and miRNAs exhibit strand bias. Cell 115: 209–216

  30. 30.

    Lee Y.S., Nakahara K., Pham J.W., Kim K., He Z., Sontheimer E.J., Carthew R.W. (2004). Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117: 69–81

  31. 31.

    Liquori C.L., Ricker K., Moseley M.L., Jacobsen J.F., Kress W., Naylor S.L., Day J.W., Ranum L.P.W. (2001). Myotinic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293: 864–867

  32. 32.

    Jin P., Alisch R.S., Warren S.T. (2004). RNA and microRNAs in fragile X mental retardation. Nat Cell Biol. 6: 1048–1053

  33. 33.

    Eberhart D.E., Malter H.E., Feng Y., Warren S.T. (1996). The fragile X mental retardation protein is a ribonucleoprotein containing both nuclear localization and nuclear export signals. Hum Mol Genet. 5: 1083–1091

  34. 34.

    Tuschl T., Borkhardt A. (2002). Small interfering RNAs: a revolutionary tool for the analysis of gene function and gene therapy. Mol Interv. 2: 158–167

  35. 35.

    Miyagishi M., Taira K. (2002). U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol. 20: 497–500

  36. 36.

    Lee N.S., Dohjima T., Bauer G., Li H., Li M.J., Ehsani A., Salvaterra P., Rossi J. (2002). Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol. 20: 500–505

  37. 37.

    Paul C.P., Good P.D., Winer I., Engelke D.R. (2002). Effective expression of small interfering RNA in human cells. Nat Biotechnol. 20: 505–508

  38. 38.

    Xia H., Mao Q., Paulson H.L., Davidson B.L. (2002). siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol. 20: 1006–1010

  39. 39.

    McCaffrey A.P., Meuse L., Pham T.T., Conklin D.S., Hannon G.J., Kay M.A. (2002). RNA interference in adult mice. Nature 418: 38–39

  40. 40.

    Gunnery S., Ma Y., Mathews M.B. (1999). Termination sequence requirements vary among genes transcribed by RNA polymerase III. J Mol Biol. 286: 745–757

  41. 41.

    Schramm L., Hernandez N. (2002). Recruitment of RNA polymerase III to its target promoters. Genes Dev. 16: 2593–2620

  42. 42.

    Sledz C.A., Holko M., de Veer M.J., Silverman R.H., Williams B.R. (2003). Activation of the interferon system by short-interfering RNAs. Nat Cell Biol. 5: 834–839

  43. 43.

    Lin S.L., Ying S.Y. (2004). Combinational therapy for HIV-1 eradication and vaccination. Intrn’l J. Oncol. 24: 81–88

  44. 44.

    Stark G.R., Kerr I.M., Williams B.R, Silverman R.H., Schreiber R.D. (1998). How cells respond to interferons. Annu. Rev. Biochem. 67: 227–264

  45. 45.

    Lin S.L., Ying S.Y. (2004). New drug design for gene therapy – Taking Advantage of Introns. Lett Drug Design & Discovery 1: 256–262

  46. 46.

    Lin S.L., Ying S.Y. (2004) Novel RNAi therapy – Intron-derived microRNA drugs. Drug Design Reviews 1: 247–255

  47. 47.

    Nott A., Meislin S.H., Moore M.J. (2003) A quantitative analysis of intron effects on mammalian gene expression. RNA 9: 607–617

  48. 48.

    Zhang G., Taneja K.L., Singer R.H., Green M.R. (1994). Localization of pre-mRNA splicing in mammalian nuclei. Nature 372: 809–812

  49. 49.

    Ghosh S., Garcia-Blanco M.A. (2000). Coupled in vitro synthesis and splicing of RNA polymerase II transcripts. RNA 6: 1325–1334

  50. 50.

    Ying S.Y., Lin S.L. (2005) Intronic microRNAs. Biochem Biophys Res Commun. 326: 515–520

Download references

Acknowledgements

This study was supported by NIH/NCI grant CA-85722.

Author information

Correspondence to Shao-Yao Ying.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ying, S., Lin, S. Current perspectives in intronic micro RNAs (miRNAs). J Biomed Sci 13, 5–15 (2006). https://doi.org/10.1007/s11373-005-9036-8

Download citation

Keywords

  • fine-tuning of gene function
  • functional/structural genomics
  • gene expression
  • genetic regulation
  • intronic microRNA
  • miRNA biogenesis
  • miRNA
  • post-translational modification
  • regulatory gene