Intelligent Service Robotics

, Volume 12, Issue 4, pp 407–418 | Cite as

FA–QABC–MRTA: a solution for solving the multi-robot task allocation problem

  • Farouq ZitouniEmail author
  • Ramdane Maamri
  • Saad Harous
Original Research Paper


The problem of task allocation in a multi-robot system is the situation where we have a set of tasks and a number of robots; then each task is assigned to the appropriate robots with the aim of optimizing some criteria subject to constraints, e.g., allocate the maximum number of tasks. We propose an effective solution to address this problem. It implements a two-stage methodology: first, a global allocation based of the well-known firefly algorithm, and then, a local allocation combining advantages of quantum genetic algorithms and artificial bee colony optimization. We compared our proposed solution to one solution from the state of the art. The simulation results show that our scheme significantly performs better than this solution. Our solution allocated \(100\%\) of the tasks (in every configuration tried in the experiments) and enhanced the allocation time by \(75\%\).


Multi-robot system Task allocation Firefly algorithm Artificial bee colony optimization Quantum genetic algorithms 



  1. 1.
    Barnhart C, Johnson EL, Nemhauser GL, Savelsbergh MWP, Vance PH (1996) Branch-and-price: column generation for solving huge integer programs. Oper Res 46:316–329MathSciNetCrossRefGoogle Scholar
  2. 2.
    Berhault M, Huang H, Keskinocak P, Koenig S, Elmaghraby W, Griffin P, Kleywegt A (2003) Robot exploration with combinatorial auctions. In: Proceedings 2003 IEEE/RSJ international conference on intelligent robots and systems (IROS 2003) (Cat. No.03CH37453), vol 2, pp 1957–1962.
  3. 3.
    Botelho SC, Alami R (1999) M+: a scheme for multi-robot cooperation through negotiated task allocation and achievement. In: Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C), vol 2, pp 1234–1239.
  4. 4.
    Chien S, Barrett A, Estlin T, Rabideau G (2000) A comparison of coordinated planning methods for cooperating rovers. In: Proceedings of the fourth international conference on autonomous agents, AGENTS ’00. ACM, New York, pp 100–101.
  5. 5.
    Dias MB (2004) Traderbots: a new paradigm for robust and efficient multirobot coordination in dynamic environments. PhD Thesis, Carnegie Mellon University, Pittsburgh, PAGoogle Scholar
  6. 6.
    Gerkey BP, Matarić MJ (2004) A formal analysis and taxonomy of task allocation in multi-robot systems. Int J Robot Res 23(9):939–954. CrossRefGoogle Scholar
  7. 7.
    Gerkey BP, Mataric MJ (2002) Sold!: auction methods for multirobot coordination. IEEE Trans Robot Autom 18(5):758–768. CrossRefGoogle Scholar
  8. 8.
    Guerrero J, Oliver G (2003) Multi-robot task allocation strategies using auction-like mechanisms. Artif Res Dev Front Artif Intell Appl 100:111–122Google Scholar
  9. 9.
    Han Y, Li D, Chen J, Yang X, Hu Y, Zhang G (2010) A multi-robots task allocation algorithm based on relevance and ability with group collaboration, vol 3. CrossRefGoogle Scholar
  10. 10.
    Hussein A, Khamis A (2013) Market-based approach to multi-robot task allocation. In: International conference on individual and collective behaviors in robotics (ICBR), pp 69–74.
  11. 11.
    Hussein A, Adel M, Bakr M, Shehata OM, Khamis A (2014) Multi-robot task allocation for search and rescue missions. J Phys Conf Ser 570(5):052006CrossRefGoogle Scholar
  12. 12.
    Jones EG, Dias MB, Stentz A (2011) Time-extended multi-robot coordination for domains with intra-path constraints. Autonom Robots 30(1):41–56. CrossRefGoogle Scholar
  13. 13.
    Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471. MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Katriel J (2008) On a generalized recurrence for bell numbers. J Integer Sequ 11(2):3MathSciNetzbMATHGoogle Scholar
  15. 15.
    Khamis A, Hussein A, Elmogy A (2015) Multi-robot task allocation: a review of the state-of-the-art. Springer, Berlin, pp 31–51. CrossRefGoogle Scholar
  16. 16.
    Koenig S, Tovey C, Zheng X, Sungur I (2007) Sequential bundle-bid single-sale auction algorithms for decentralized control. In: Proceedings of the 20th international joint conference on artifical intelligence, IJCAI’07. Morgan Kaufmann Publishers Inc., San Francisco, pp 1359–1365Google Scholar
  17. 17.
    Koes M, Nourbakhsh I, Sycara K (2006) Constraint optimization coordination architecture for search and rescue robotics. In: Proceedings 2006 IEEE international conference on robotics and automation, 2006. ICRA 2006, pp 3977–3982.
  18. 18.
    Korsah GA (2011) Exploring bounded optimal coordination for heterogeneous teams with cross-schedule dependencies. PhD Thesis, Carnegie Mellon University, Pittsburgh, PAGoogle Scholar
  19. 19.
    Korsah GA, Stentz A, Dias MB (2013) A comprehensive taxonomy for multi-robot task allocation. Int J Robot Res 32(12):1495–1512. CrossRefGoogle Scholar
  20. 20.
    Lagoudakis MG, Markakis E, Kempe D, Keskinocak P, Kleywegt A, Koenig S, Tovey C, Meyerson A, Jain S (2005) Auction-based multi-robot routing. In: Proceedings of robotics: science and systems, Cambridge, USA.
  21. 21.
    Lahoz-Beltra R (2016) Quantum genetic algorithms for computer scientists. Computers 5(4):24CrossRefGoogle Scholar
  22. 22.
    Lemaire T, Alami R, Lacroix S (2004) A distributed tasks allocation scheme in multi-uav context. In: 2004 IEEE international conference on robotics and automation, 2004. Proceedings. ICRA ’04, vol 4, pp 3622–3627.
  23. 23.
    Liu L, Zhiqiang Z (2005) Combinatorial bids based multi-robot task allocation method. In: Proceedings of the 2005 IEEE international conference on robotics and automation, pp 1145–1150.
  24. 24.
    Mackenzie DC (2003) Collaborative tasking of tightly constrained multi-robot missions. In: Multi-robot systems: from swarms to intelligent automata: proceedings of the 2003 international workshop on multi-robot systems. Kluwer Academic PublishersGoogle Scholar
  25. 25.
    Melvin J, Keskinocak P, Koenig S, Tovey CA, Ozkaya BY (2007) Multi-robot routing with rewards and disjoint time windows. In: IROS, pp 2332–2337Google Scholar
  26. 26.
    Nunes E, Manner M, Mitiche H, Gini M (2017) A taxonomy for task allocation problems with temporal and ordering constraints. Robot Auton Syst 90(C):55–70. CrossRefGoogle Scholar
  27. 27.
    Orden A (1956) The transhipment problem. Manag Sci 2(3):276–285. MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Parker LE, Fang T (2006) Building multirobot coalitions through automated task solution synthesis. Proc IEEE 94(7):1289–1305. CrossRefGoogle Scholar
  29. 29.
    Shehory O, Kraus S (1995) Task allocation via coalition formation among autonomous agents. In: Proceedings of the 14th international joint conference on artificial intelligence, IJCAI’95, vol 1. Morgan Kaufmann Publishers Inc., San Francisco, pp 655–661Google Scholar
  30. 30.
    Shehory O, Kraus S (1998) Methods for task allocation via agent coalition formation. Artif Intell 101(1):165–200. MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Shiroma PM, Campos MFM (2009) Comutar: A framework for multi-robot coordination and task allocation. In: 2009 IEEE/RSJ international conference on intelligent robots and systems, pp 4817–4824.
  32. 32.
    Simmons RG, Apfelbaum D, Burgard W, Fox D, Moors M, Thrun S, Younes HLS (2000) Coordination for multi-robot exploration and mapping. In: Proceedings of the seventeenth national conference on artificial intelligence and twelfth conference on innovative applications of artificial intelligence. AAAI Press, pp 852–858Google Scholar
  33. 33.
    Smith RG (1980) The contract net protocol: high-level communication and control in a distributed problem solver. IEEE Trans Comput C–29(12):1104–1113. CrossRefGoogle Scholar
  34. 34.
    Tang F, Parker LE (2007) A complete methodology for generating multi-robot task solutions using asymtre-d and market-based task allocation. In: Proceedings 2007 IEEE international conference on robotics and automation, pp 3351–3358.
  35. 35.
    Vail D, Veloso M (2003) Multi-robot dynamic role assignment and coordination through shared potential fields. In: A Schultz LP, Schneider F (eds) Multi-robot systemsGoogle Scholar
  36. 36.
    Vig L, Adams JA (2006) Multi-robot coalition formation. IEEE Trans Rob 22(4):637–649. CrossRefzbMATHGoogle Scholar
  37. 37.
    Yang XS (2008) Nature-inspired metaheuristic algorithms. Luniver Press, BristolGoogle Scholar
  38. 38.
    Yang XS (2009) Firefly algorithms for multimodal optimization. In: Watanabe O, Zeugmann T (eds) Stochastic algorithms: foundations and applications. Springer, Berlin, pp 169–178CrossRefGoogle Scholar
  39. 39.
    Zitouni F, Maamri R (2018a) Cooperative learning-agents for task allocation problem. In: Auer ME, Tsiatsos T (eds) Interactive mobile communication technologies and learning. Springer, Cham, pp 952–968CrossRefGoogle Scholar
  40. 40.
    Zitouni F, Maamri R (2018b) FA–SETPOWER–MRTA: a solution for solving the multi-robot task allocation problem. In: Computational intelligence and its applications—6th IFIP TC 5 international conference, CIIA 2018, Oran, Algeria, May 8–10, 2018, Proceedings, pp 317–328.
  41. 41.
    Zlot RM (2006) An auction-based approach to complex task allocation for multirobot teams. PhD Thesis, Pittsburgh, PA, USA, aAI3250901Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceKasdi Merbah UniversityOuarglaAlgeria
  2. 2.Department of Computer ScienceConstantine 2 - Abdelhamid Mehri UniversityConstantineAlgeria
  3. 3.Department of Computer ScienceUAE UniversityAbu DhabiUnited Arab Emirates

Personalised recommendations