Advertisement

Optimal motion planning and stopping test for 3-D object reconstruction

  • Heikel Yervilla-Herrera
  • J. Irving Vasquez-Gomez
  • Rafael Murrieta-Cid
  • Israel Becerra
  • L. Enrique Sucar
Original Research Paper

Abstract

In this work, two aspects of motion planning for object reconstruction are investigated. First, the effect of using a sampling-based optimal motion planning technique to move a mobile manipulator robot with 8 degrees of freedom, during the reconstruction process, in terms of several performance criteria is studied. Based on those criteria, the results of the reconstruction task using rapidly exploring random tree (RRT) approaches are compared, more specifically RRT* smart versus RRT* versus standard RRT. Second, the problem of defining a convenient stopping probabilistic test to terminate the reconstruction process is addressed. Based on our results, it is concluded that the use of a RRT* improves the measured performance criteria compared with a standard RRT. The simulation experiments show that the proposed stopping test is adequate. It stops the reconstruction process when all the portions of object that are possible to be seen have been covered with the field of view of the sensor.

Keywords

Optimal motion planning Object reconstruction Termination test 

Notes

Supplementary material

Supplementary material 1 (mp4 8390 KB)

References

  1. 1.
    Chen S, Li Y, Kwok NM (2011) Active vision in robotic systems: a survey of recent developments. Int J Rob Res 30(11):1343–1377CrossRefGoogle Scholar
  2. 2.
    Cieslewski T, Kaufmann E, Scaramuzza D. (2017) Rapid exploration with multi-rotors: a frontier selection method for high speed flight. In: Proc. IEEE/RSJ int. conf. on intelligent robots and systemsGoogle Scholar
  3. 3.
    Delmerico J, Isler S, Sabzevari R et al (2018) A comparison of volumetric information gain metrics for active 3D object reconstruction. Auton Robots 42:197.  https://doi.org/10.1007/s10514-017-9634-0 CrossRefGoogle Scholar
  4. 4.
    Hornung A, Wurm KM, Bennewitz M, Stachniss C, Burgard W (2013) Octomap: an efficient probabilistic 3d mapping framework based on octrees. Auton Robots 34(3):189–206CrossRefGoogle Scholar
  5. 5.
    Isler S, Sabzevari R, Delmerico J, Scaramuzza D (2016) An information gain formulation for active volumetric 3D reconstruction. In: Proc. IEEE int. conf. on robotics and automation, pp 3477–3484Google Scholar
  6. 6.
    Karaman S, Frazzoli E (2011) Sampling-based algorithms for optimal motion planning. Int J Rob Res 30(7):846–894CrossRefGoogle Scholar
  7. 7.
    Kavraki LE, Svestka P, Latombe J-C, Overmars MH (1996) Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans Rob Autom 12(4):566–580CrossRefGoogle Scholar
  8. 8.
    Khalfaoui S, Seulin R, Fougerolle YD, Fofi D (2013) An efficient method for fully automatic 3d digitization of unknown objects. Comput Ind 64(9):1152–1160CrossRefGoogle Scholar
  9. 9.
    Kriegel S, Rink C, Bodenmller T, Suppa M (2013) Efficient next-best-scan planning for autonomous 3d surface reconstruction of unknown objects. J Real-Time Image Process 1–21Google Scholar
  10. 10.
    LaValle SM, Kuffner JJ (2001) Randomized kinodynamic planning. Int J Rob Res 20(5):378–400CrossRefGoogle Scholar
  11. 11.
    Lozano Albalate MT, Devy M, Sanchiz Marto JM (2002) Perception planning for an exploration task of a 3D environment. In: Proc. int. conf. on pattern recognition, pp 704–707Google Scholar
  12. 12.
    Nasir J, Islam F, Malik U, Ayaz Y, Hasan O, Khan M, Muhammad MS (2013) RRT*-SMART: a rapid convergence implementation of RRT*. Int J Adv Rob Syst 10(7)Google Scholar
  13. 13.
    Noreen I, Khan A, Habib Z (2016) A comparison of RRT, RRT* and RRT*—smart path planning algorithms. Int J Comput Sci Netw Secur 16(10)Google Scholar
  14. 14.
    Potthast C, Sukhatme G (2014) A probabilistic framework for next best view estimation in a cluttered environment. J Vis Commun Image Represent 25(1):148–164CrossRefGoogle Scholar
  15. 15.
    Sarmiento A, Murrieta-Cid R, Hutchinson S (2005) A sample-based convex cover for rapidly finding an object in a 3-D environment. In: Proc. IEEE int. conf. on robotics and automation, pp 3497–3502Google Scholar
  16. 16.
    Scott WR, Roth G, Rivest JF (2003) View planning for automated three-dimensional object reconstruction and inspection. ACM Comput Surv (CSUR) 35(1):64–96CrossRefGoogle Scholar
  17. 17.
    Song S, Jo S (2017) Online inspection path planning for autonomous 3d modeling using a micro-aerial vehicle. In: IEEE international conference on robotics and automation, pp 6217–6224, 29 May–3 June, Singapore, SingaporeGoogle Scholar
  18. 18.
    Song S, Jo S (2018) Surface-based exploration for autonomous 3D modeling. In: IEEE international conference on robotics and automation, Brisbane, AustraliaGoogle Scholar
  19. 19.
    Srinivasan Ramanagopal M, Nguyen APV, Ny J Le (2018) A motion planning strategy for the active vision-based mapping of ground-level structures. IEEE Trans Autom Sci Eng 15(1):356–368CrossRefGoogle Scholar
  20. 20.
    Torabi L, Gupta K (2012) An autonomous 9-dof mobile-manipulator system for in situ 3d object modeling. In: Proc. IEEE/RSJ int. conf. on intelligent robots and systems, pp 4540–4541Google Scholar
  21. 21.
    Torabi L, Gupta K (2012) An autonomous six-dof eye-in-hand system for in situ 3d object modeling. Int J Rob Res 31(1):82–100CrossRefGoogle Scholar
  22. 22.
    Vasquez-Gomez JI, Sucar LE, Murrieta-Cid R (2014) View planning for 3D object reconstruction with a mobile manipulator robot. In: Proc. IEEE/RSJ int. conf. on intelligent robots and systems, pp 4227–4233Google Scholar
  23. 23.
    Vasquez-Gomez JI, Sucar LE, Murrieta-Cid R (2017) View/state planning for three-dimensional object reconstruction under uncertainty. Auton Robots 41(1):89–109CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro de Investigación en Matemáticas (CIMAT)GuanajuatoMexico
  2. 2.Consejo Nacional de Ciencia y Tecnología (CONACYT) - Instituto Politécnico Nacional (IPN)Mexico CityMexico
  3. 3.Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE)San Andrés CholulaMexico

Personalised recommendations