Motion planning and control for endoscopic operations of continuum manipulators

  • Guangping HeEmail author
Original Research Paper


This paper presents a novel coordinated motion planning method for solving the inverse kinematic problems of endoscopic operations of continuum manipulators. For safe and stable control of the continuum manipulators in complex constrained environments, a saturated feedback controller is proposed. The global stability of the controller is analyzed. Some numerical simulations also demonstrate that the proposed motion planning method and the control approach are feasible under certain conditions.


Continuum manipulators Endoscopic operations Motion planning Control Robots 



This work was supported by the Natural Science Foundation of Beijing under Grants L172001, 3172009 and 16L00001 and the National Natural Science Foundation of China under Grant 51775002.


  1. 1.
    Dong X, Axinte D, Palmer D, Cobos S, Raffles M, Rabani A, Kell J (2017) Development of a slender continuum robots system for on-wing inspection/repair of gas turbine engines. Robot Comput Integr Manuf 44:218–229CrossRefGoogle Scholar
  2. 2.
    Ding Jienan, Goldman Roger E, Kai Xu, Allen Peter K, Fowler Dennis L, Simaan Nabil (2013) Design and coordination kinematics of an insertable robotic effectors platform for single-port access surgery. IEEE/ASME Trans Mechatron 18(5):1612–1624CrossRefGoogle Scholar
  3. 3.
    Jones BA, Walker ID (2006) Kinematics for multisection continuum robots. IEEE Trans Rob 22(1):43–55CrossRefGoogle Scholar
  4. 4.
    Gravahne Ian A, Walker ID (2002) Manipulability, force and compliance analysis for planar continuum manipulators. IEEE Trans Robot Autom 18(3):263–273CrossRefGoogle Scholar
  5. 5.
    Gao Anzhu, Murphy Ryan J, Liu Hao, Iordachita Iulian I, Armand Mehran (2017) Mechanical model of dexterous continuum manipulators with compliant joints and tendon/external force interactions. IEEE/ASME Trans Mechatron 22(1):465–475CrossRefGoogle Scholar
  6. 6.
    Camarillo David B, Milne Christopher F, Carlson Christopher R, Zinn Michael R, Salisbury J Kenneth (2008) Mechanics modeling of tendon-driven continuum manipulators. IEEE Trans Rob 24(6):1262–1273CrossRefGoogle Scholar
  7. 7.
    Webster RJ III, Romano JM, Cowan NJ (2009) Mechanics of precurved-tube continuum robots. IEEE Trans Rob 25(1):67–78CrossRefGoogle Scholar
  8. 8.
    Yip MC, Camarillo DB (2014) Model-less feedback control of continuum manipulators in constrained environments. IEEE Trans Rob 30(4):880–889CrossRefGoogle Scholar
  9. 9.
    Yip MC, Camarillo DB (2016) Model-less hybrid position/force control: a minimalist approach for continuum manipulators in unknown, constrained environments. IEEE Robot Autom Lett 1(2):844–851CrossRefGoogle Scholar
  10. 10.
    Webster RJ III, Jones BA (2010) Design and kinematic modeling of constant curvature continuum robots: a review. Int J Robot Res 29(13):1661–1683CrossRefGoogle Scholar
  11. 11.
    Yang J, Pitarch EP, Potratz J, Beck S, Abdel-Malek K (2006) Synthesis and analysis of a flexible elephant trunk robot. Adv Robot 20(6):631–659CrossRefGoogle Scholar
  12. 12.
    Wang Y, Chirikjian GS (2003) Workspace generation of hyper-redundant manipulators as a diffusion process on SE(N). IEEE Trans Robot Autom 20(3):399–408CrossRefGoogle Scholar
  13. 13.
    Li Jinglin, Xiao Jing (2016) Progressive planning of continuum grasping in cluttered space. IEEE Trans Rob 32(3):707–716CrossRefGoogle Scholar
  14. 14.
    Siciliano B (1990) Kinematic control of redundant robot manipulators: a tutorial. J Intell Rob Syst 3(3):201–212CrossRefGoogle Scholar
  15. 15.
    Kai Xu, Simaan Nabil (2010) Analytical formulation for kinematics, statics, and shape restoration of multibackbone continuum robots via elliptic integrals. ASME J Mech Robot 2(1):298–320Google Scholar
  16. 16.
    Murray RM, Li Z, Sastry SS (1994) A mathematical introduction to robotic manipulation. CRC Press, Boca RatonzbMATHGoogle Scholar
  17. 17.
    Lewis Frank L, Zhang H, Hengster-Movric K, Das A (2014) Cooperative control of multi-agent systems. Springer, LondonCrossRefzbMATHGoogle Scholar
  18. 18.
    Chen J, Cao X, Cheng P, Xiao Y, Sun Y (2010) Distributed collaborative control for industrial automation with wireless sensor and actuator networks. IEEE Trans Ind Electron 57(12):4219–4230CrossRefGoogle Scholar
  19. 19.
    Ren W, Cao C (2011) Distributed coordination of multi-agent networks: emergent problems, models, and issues. Springer, LondonCrossRefzbMATHGoogle Scholar
  20. 20.
    Laumond Jean-Paul (1998) Robot motion planning and control. Springer, LondonCrossRefGoogle Scholar
  21. 21.
    He G, Chen R, Zhang Y (2017) Globally stabilizing a class of underactuated mechanical systems on the basis of finite-time stabilizing observer. J Intell Rob Syst 86:353–366CrossRefGoogle Scholar
  22. 22.
    Sepulchre R, Jankovic M, Kokotovic PV (1997) Constructive nonlinear control. Springer, LondonCrossRefzbMATHGoogle Scholar
  23. 23.
    Olfati-Saber R (2001) Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles, Massachusetts Institute of Technology, Doctor DissertationGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Electrical EngineeringNorth China University of TechnologyBeijingChina

Personalised recommendations