Intelligent Service Robotics

, Volume 9, Issue 2, pp 101–112 | Cite as

Experimental validation of in-hand planar orientation and translation in microscale

  • Benoit Brazey
  • Redwan Dahmouche
  • Jean-Antoine Seon
  • Michael Gauthier
Special Issue


This paper presents the experimental validation of automatic dexterous in-hand manipulation of micro-objects. Currently, precise handling of micro-objects is still a challenge, especially when large rotations are required. Indeed, the current dexterity of microgrippers is still very low and only some small range rotations have been shown. Although the robotic hands in the macroscale have better capabilities, they are not able to manipulate micro-objects. The proposed approach extends the capabilities of dexterous macrohands to the microgrippers enabling dexterous micro-manipulation. Design rules of the micro-hand fingers and trajectories enabling micro-manipulation are proposed. The developed methods are validated by simulation and on an original experimental prototype having three fingers (7 \(\upmu \)m in diameter). Half turns of \(220\,\upmu \)m square objects demonstrate the relevance of the approach which opens the way to new advanced in-hand micro-manipulation and micro-assembly methods.


Micromanipulation Microhandling  In-hand manipulation Dexterous handling  Experimental validation 



This work has been supported by: Labex ACTION project (contract “ANR-11-LABX-0001-01”), Equipex ROBOTEX project (contract “ANR-10-EQPX-44-01”), French RENATECH network and its FEMTO-ST technological facility, Region of Franche-Comté, Percipio Robotics SA Company.


  1. 1.
    Savia M, Koivo H (2009) Contact micromanipulation survey of strategies. Mechatron IEEE/ASME Trans 14(4):504–514Google Scholar
  2. 2.
    Clévy C, Hubert A, Chaillet N (2006) Micromanipulation and micro-assembly systems, IEEE/RAS international advanced robotics programm, IARP’06, Paris, FranceGoogle Scholar
  3. 3.
    Tamadazte B, Marchand E, Dembele S, Le Fort-Piat N (2010) CAD model-based tracking and 3D visual-based control for MEMS microassembly. Int J Robot Re 29(11):1416–1434CrossRefGoogle Scholar
  4. 4.
    Arai F, Fukuda T, Iwata K, Itoigawa H (1991) Fifth international conference on advanced robotics robots in unstructured environmentsGoogle Scholar
  5. 5.
    Kim Y-S, Yoo J-M, Yang SH, Choi Y-M, Dagalakis NG, Gupta SK (2012) Design, fabrication and testing of a serial kinematic MEMS XY stage for multifinger manipulation. J Micromech Microeng 22(8):085029Google Scholar
  6. 6.
    Chu HK, Mills JK, Cleghorn WL (2012) Dual-arm micromanipulation and handling of objects through visual images. In: Proceedings of international mechatronics and automation (ICMA) Conference, pp 813–818Google Scholar
  7. 7.
    Matsuzaki Y, Inoue K, Lee S (2009) Manipulation of micro-scale objects using micro hand with two rotational fingers. In: Proceedings of international symposium micro-nanomechatronics and human science MHS 2009. pp 438–443Google Scholar
  8. 8.
    Xie H, Régnier S (2011) Development of a flexible robotic system for multiscale applications of micro/nanoscale manipulation and assembly. IEEE/ASME Trans Mechatron 16(2):266–276CrossRefGoogle Scholar
  9. 9.
    Wason JD, Wen JT, Dagalakis NG (2011) Dextrous manipulation of a micropart with multiple compliant probes through visual force feedback. In: 2011 IEEE international conference on robotics and automation. IEEE, pp 5991–5996Google Scholar
  10. 10.
    Krishnan S, Saggere L (2007) A multi-fingered micromechanism for coordinated micro/nano manipulation. J Micromech Microeng 17(3):576–585CrossRefGoogle Scholar
  11. 11.
    Zhou Q, Korhonen P, Laitinen J, Sjovall S (2006) Automatic dextrous microhandling based on a 6 DOF microgripper. J Micromech 3(3–4):359–387CrossRefGoogle Scholar
  12. 12.
    Shimada E, Thompson J, Yan J, Wood R, Fearing R (2000) Prototyping millirobots using dextrous microassembly and foldings. In: ASME international mechanical engineering congress and expositionGoogle Scholar
  13. 13.
    Thompson J, Fearing R (2001) Automating microassembly with Ortho-tweezers and force sensing. In: IEEE/RSJ international conference on intelligent robots and systemsGoogle Scholar
  14. 14.
    Fearing R, Shimada E (2004) Apparatus and method for manipulation of an object. Patent US6 798 120 B1, 09 28Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Benoit Brazey
    • 1
  • Redwan Dahmouche
    • 1
  • Jean-Antoine Seon
    • 1
  • Michael Gauthier
    • 1
  1. 1.AS2M Department, FEMTO-ST InstituteUniv. Bourgogne Franche-Comté, Univ. de Franche-Comté/CNRS/ENSMMBesançonFrance

Personalised recommendations