Intelligent Service Robotics

, Volume 8, Issue 3, pp 151–163 | Cite as

A survey of non-prehensile pneumatic manipulation surfaces: principles, models and control

  • Guillaume J. Laurent
  • Hyungpil MoonEmail author
Special Issue


Many manipulation systems using air flow have been proposed for object handling in a non-prehensile way and without solid-to-solid contact. Potential applications include high-speed transport of fragile and clean products and high-resolution positioning of thin delicate objects. This paper discusses a comprehensive survey of state-of-the-art pneumatic manipulation from the macro scale to the micro scale. The working principles and actuation methods of previously developed air-bearing surfaces, ultra-sonic bearing surfaces, air-flow manipulators, air-film manipulators, and tilted air-jet manipulators are reviewed with a particular emphasis on the modeling and the control issues. The performance of the previously developed devices are compared quantitatively and open problems in pneumatic manipulation are discussed.


Pneumatic manipulation Non-prehensile manipulation  Air-jet array 

List of symbols

\(\alpha \)

Object orientation

\(\lambda \)

Surface flow

\(\mu \)

Dynamic viscosity of air

\(\rho \)

Air density

\(\theta \)

Inclination angle of the nozzles from the vertical


Cross-sectional area of the object


Section area of a nozzle


Drag coefficient


Friction coefficient


Propulsive force coefficient


Drag force


Lifting force


Propulsive force


Levitation height


Propulsive moment


Object mass


Number of sinks or air-jets


Pressure beneath the object


Volume rate flowing through a nozzle


Under surface area of the object


Transmission matrix


Horizontal velocity field of the flow over the surface


Exit speed of air in nozzle


Object speed along direction X


Object position along direction X


Object position along direction Y



This work was supported in France by the Smart Blocks project (ANR-251-2011-BS03-005), by Labex ACTION Project (ANR-11-LABX-01-01) and by Région de Franche-Comté, and in Korea by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2013R1A1A2013636). Hyungpil Moon was a recipient of Erasmus Mundus scholarships recommended by Prof. Nadine Le Fort-Piat at ENSMM, France.


  1. 1.
    McGary EL (1900) Air conveyer. U.S. Patent 662,574Google Scholar
  2. 2.
    Hagler RG (1973) Transporting and positioning system. U.S. Patent 3,717,381Google Scholar
  3. 3.
    Babinski JP, Bertelsen BI, Raacke KH, Sirgo VH,Townsend CJ (1976) Transport system for semiconductor wafer multiprocessing station system. U.S. Patent 3,976,330Google Scholar
  4. 4.
    Paivanas JA, Hassan JK (1979) Air film system for handling semiconductor wafers. IBM J Res Dev 23(4):361–375CrossRefGoogle Scholar
  5. 5.
    Hassan JK , Paivanas JA (1979) Pneumatic control of the motion of objects suspended on an air film. U.S. Patent 4,165,132Google Scholar
  6. 6.
    Hassan JK, Paivanas JA (1978) Wafer air film transportation system. U.S. Patent 4,081,201Google Scholar
  7. 7.
    Konishi S, Fujita H (1994) A conveyance system using air flow based on the concept of distributed micro motion systems. IEEE/ASME J Microelectromech Syst 3(2):54–58CrossRefGoogle Scholar
  8. 8.
    Schilp M, Zimmermann J, Zitzmann A (2011) Device for non-contact transporting and holding of objects or material. U.S. Patent 0,311,320Google Scholar
  9. 9.
    Reinhart G, Hoeppner J (2000) Non-contact handling using high-intensity ultrasonics. CIRP Ann-Manuf Technol 49(1):5–8CrossRefGoogle Scholar
  10. 10.
    Reinhart G, Heinz M, Stock J, Zimmermann J, Schilp M, Zitzmann A, Hellwig J (2011) Non-contact handling and transportation for substrates and microassembly using ultrasound-air-film-technology. In: Proceedings of the IEEE/SEMI advanced semiconductor manufacturing conference, pp 1–6Google Scholar
  11. 11.
    Ueha S, Hashimoto Y, Koike Y (2000) Non-contact transportation using near-field acoustic levitation. Ultrasonics 38:26–32CrossRefGoogle Scholar
  12. 12.
    Varsos K, Luntz J (2006) Superposition methods for distributed manipulation using quadratic potential force fields. IEEE Trans Robot 22(6):1202–1215CrossRefGoogle Scholar
  13. 13.
    Luntz J, Moon H (2001) Distributed manipulation with passive air flow. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, pp 195–201Google Scholar
  14. 14.
    Varsos K, Moon H, Luntz J (2006) Generation of quadratic potential force fields from flow fields for distributed manipulation. IEEE Trans Robot 22(1):108–118CrossRefGoogle Scholar
  15. 15.
    Moon H, Luntz J (2006) Distributed manipulation of flat objects with two airflow sinks. IEEE Trans Robot 22(6):1189–1201CrossRefGoogle Scholar
  16. 16.
    Laurent GJ, Delettre A, Le Fort-Piat N (2011) A new aerodynamic traction principe for handling products on an air cushion. IEEE Trans Robot 27(2):379–384CrossRefGoogle Scholar
  17. 17.
    Delettre A, Laurent GJ, Le Fort-Piat N, Varnier C (2012) 3-dof potential air flow manipulation by inverse modeling control. In: Proceedings of the IEEE international conference on automation science and engineering, pp 926–931Google Scholar
  18. 18.
    Delettre A, Laurent GJ, Haddab Y, Le Fort-Piat N (2012) Robust control of a planar manipulator for flexible and contactless handling. Mechatronics 22(6):852–861CrossRefGoogle Scholar
  19. 19.
    Delettre A, Laurent GJ, Le Fort-Piat N (2011) 2-dof contactless distributed manipulation using superposition of induced air flows. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, pp 5121–5126Google Scholar
  20. 20.
    Berlin A, Biegelsen D, Cheung P, Fromherz M, Goldberg D, Jackson W, Preas B, Reich J, Swartz L-E (2000) Motion control of planar objects using large-area arrays of mems-like distributed manipulators. Xerox Palo Alto Research Center CA/USA, presented at Micromechatronics. Accessed 10 June 2015
  21. 21.
    Biegelsen DK, Berlin A, Cheung P, Fromherz MPJ, Goldberg D, Jackson WB, Preas B, Reich J, Swartz L-E (2000) Air-jet paper mover: an example of meso-scale mems. In: SPIE international symposium on micromachining and microfabricationGoogle Scholar
  22. 22.
    Jackson WB, Fromherz MPJ, Biegelsen DK, Reich J, Goldbergb D (2001) Constrained optimization based control of real time large-scale systems: airjet object movement system. In: Proceedings of the IEEE conference on decision and control, Orlando, Florida, Dec, pp 4–7Google Scholar
  23. 23.
    Fukuta Y, Mita Y, Arai M, Fujita H (2003) Pneumatic two-dimensional conveyance system for autonomous distributed mems. In: Proceedings of the 12th international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS’03), vol 2, pp 1019–1022Google Scholar
  24. 24.
    Fukuta Y, Yanada M, Ino A, Mita Y, Chapuis Y-A, Konishi S, Fujita H (2004) Conveyor for pneumatic two-dimensional manipulation realized by arrayed mems and its control. J Robot Mechatron 16(2):163–170Google Scholar
  25. 25.
    Fukuta Y, Chapuis Y-A, Mita Y, Fujita H (2006) Design, fabrication and control of mems-based actuator arrays for air-flow distributed micromanipulation. IEEE/ASME J Microelectromech Syst 15(4):912–926CrossRefGoogle Scholar
  26. 26.
    Teschler L (2008) Next big challenge for pv makers: wafer handling. Mach Des pp 1–7. Accessed 10 June 2015
  27. 27.
    International Technology Roadmap For Semiconductors (2013) The ITRS is Jointly Sponsored by European Semiconductor Industry Association, Japan Electronics and Information Technology Industries Association,Korea Semiconductor Industry Association, Taiwan Semiconductor Industry Association, Semiconductor Industry AssociationGoogle Scholar
  28. 28.
    Hoetzle M, Dunifon T, Rozevink L (2003) Glass transportation system. U.S. Patent 6,505,483Google Scholar
  29. 29.
    Pister KSJ, Fearing R, Howe R (1990) A planar air levitated electrostatic actuator system. In: Proceedings of the IEEE workshop on micro electro mechanical systems (MEMS), pp 67–71, Napa Valley, CaliforniaGoogle Scholar
  30. 30.
    Lee Y-C, Chin-Chang Y, Tsai R-Y, Hsiao J-C, Chen C-H, Huang S-K (2011) Development of a porous ceramic-based air float platform for large glass substrates. Spec Top Rev Porous Media Int J 2(4):313–321CrossRefGoogle Scholar
  31. 31.
    Fourka M, Bonis M (1997) Comparison between externally pressurized gas thrust bearings with different orifice and porous feeding systems. Wear 210(1–2):311–317CrossRefGoogle Scholar
  32. 32.
    Schenk C, Buschmann S, Risse S, Eberhardt R, Tnnermann A (2008) Comparison between flat aerostatic gas-bearing pads with orifice and porous feedings at high-vacuum conditions. Precis Eng 32(4):319–328CrossRefGoogle Scholar
  33. 33.
    Devitt AJ (2011) Non-contact porous air bearing and glass flattening device. U.S. Patent 7,908,885Google Scholar
  34. 34.
    Salbu E (1964) Compressible squeeze films and squeeze bearings. J Basic Eng 86:355–366CrossRefGoogle Scholar
  35. 35.
    Hashimoto Y, Koike Y, Ueha S (1996) Near-field acoustic levitation of planar specimens using flexural vibration. J Acoust Soc Am 100(4):2057–2061CrossRefGoogle Scholar
  36. 36.
    Amano T, Koike Y, Nakamura K, Ueha S, Hashimoto Y (2000) A multi-transducer near field acoustic levitation system for noncontact transportation of large-sized planar objects. Jpn J Appl Phys 39:2982–2985CrossRefGoogle Scholar
  37. 37.
    Höppner J, Zimmermann J (2003) Device for contactlessly gripping and positioning components. U.S. Patent 6,647,791Google Scholar
  38. 38.
    Zimmermann J, Jacob D, Zitzmann A (2007) Device for conveying and positioning of structural elements in non-contact way. U.S. Patent 7,260,449Google Scholar
  39. 39.
    Hashimoto Y, Koike Y, Ueha S (1998) Transporting objects without contact using flexural traveling waves. J Acoust Soc Am 103(6):3230–3233CrossRefGoogle Scholar
  40. 40.
    Moon H, Luntz J (2004) Prediction of equilibria of lifted logarithmic radial potential fields. Int J Robot Res 23(7–8):747–762CrossRefGoogle Scholar
  41. 41.
    Agnus J, Chaillet N, Clévy C, Dembélé S, Gauthier M, Haddab Y, Laurent G, Lutz P, Piat N, Rabenorosoa K, Rakotondrabe M, Tamadazte B (2013) Robotic microassembly and micromanipulation at femto-st. J Micro-Bio Robot 8(2):91–106CrossRefGoogle Scholar
  42. 42.
    Wesselingh J, van Ostayen RAJ, Spronck JW, Munnig Schmidt RH, van Eijk J (2008) Actuator for contactless transport and positioning of large flat substrates. In: Proceedings of the EUSPEN international conferenceGoogle Scholar
  43. 43.
    van Rij J, Wesselingh J, van Ostayen RAJ, Spronck JW, Munnig Schmidt RH, van Eijk J (2009) Planar wafer transport and positioning on an air film using a viscous traction principle. Tribol Int 42:1542–1549CrossRefGoogle Scholar
  44. 44.
    Wesselingh J, Spronck JW, van Ostayen RAJ, van Eijk J (2010) Contactless 6 dof planar positioning system utilizing an active air film. In: Proceedings of the EUSPEN international conferenceGoogle Scholar
  45. 45.
    Wesselingh J, Spronck JW, van Ostayen RAJ, van Eijk J (2011) Air film based contactless planar positioning system with sub-micron precision. In: Proceedings of the EUSPEN international conferenceGoogle Scholar
  46. 46.
    Toda M, Ohmi T, Nitta T, Saito Y, Kanno Y, Umeda M, Yagai M, Kidokoro H (1997) \(\text{ N }_2\) tunnel wafer transport system. J Inst Environ Sci 40(1):23–28Google Scholar
  47. 47.
    Toda M, Umeda M, Kanno Y, Ohmi T (2000) Floating apparatus of substrate. EP 1,005,076Google Scholar
  48. 48.
    Moon I-H, Hwang Y-K (2006) Evaluation of a wafer transportation speed for propulsion nozzle array on air levitation system. J Mech Sci Technol 20(9):1492–1501CrossRefGoogle Scholar
  49. 49.
    Kim Y-J, Shin DH (2006) Wafer position sensing and motion control in the clean tube system. In: Proceedings of the IEEE international conference on industrial technology, pp 1315–1319Google Scholar
  50. 50.
    Shin DH, Lee HG, Kim HS (2005) Wafer positioning control of clean tube system. In: Proceedings of the ACSE conferenceGoogle Scholar
  51. 51.
    Takaki T, Tanaka S, Aoyama T, Ishii I (2014) Position/attitude control of an object by controlling a fluid field using a grid pattern air nozzle. In: 2014 IEEE international conference on robotics and automation (ICRA), pp 6162–6167Google Scholar
  52. 52.
    Hirata T, Akashi T, Bertholds A, Gruber HP, Schmid A, Gretillat M-A, Guenat OT, De Rooij NF (1998) A novel pneumatic actuator system realised by micro-electro-discharge machining. In: Proceedings of the international workshop on micro electro mechanical systems, pp 160–165Google Scholar
  53. 53.
    Hirata T, Guenat OT, Akashi T, Gretillat M-A, de Rooij N-F (1999) A numerical simulation on a pneumatic air table realized by micro-edm. J Microelectromech Syst 8(4):523–528CrossRefGoogle Scholar
  54. 54.
    Zeggari R, Yahiaoui R, Malapert J, Manceau J-F (2010) Design and fabrication of a new two-dimensional pneumatic micro-conveyor. Sens Actuators: A Phys 164:125–130CrossRefGoogle Scholar
  55. 55.
    Yahiaoui R, Zeggari R, Malapert J, Manceau J-F (2012) A mems-based pneumatic micro-conveyor for planar micromanipulation. Mechatronics 22(5):515–521CrossRefGoogle Scholar
  56. 56.
    Laurent GJ, Delettre A, Zeggari R, Yahiaoui R, Manceau J-F, Le Fort-Piat N (2014) Micropositioning and fast transport using a contactless micro-conveyor. Micromachines 5(1):66–80CrossRefGoogle Scholar
  57. 57.
    Fromherz MPJ, Jackson WB (2003) Force allocation in a large-scale distributed active surface. IEEE Trans Control Syst Technol 11(5):641–655CrossRefGoogle Scholar
  58. 58.
    Wilson SDR (1972) A note on laminar radial flow between parallel plates. Appl Sci Res 25(1):349–354CrossRefGoogle Scholar
  59. 59.
    Dube SN (1976) Linear radial flow of a viscous liquid between two parallel coaxial stationary infinite disks. Acta Phys Acad Sci Hung 40(2):95–103CrossRefGoogle Scholar
  60. 60.
    McDonald KT (2000) Radial viscous flow between two parallel annular plates. arXiv:physics/0006067
  61. 61.
    Kim BS, Park K (2013) Numerical analysis of non contact transportation system for wafer warping. In: Proceedings of the international conference on mechanics, fluids, heat, elasticity and electromagnetic fields, pp 149–154Google Scholar
  62. 62.
    White FM (2002) Fluid mechanics. McGraw-Hill Science/Engineering/Math, New YorkGoogle Scholar
  63. 63.
    Moon I-H, Hwang YK (2004) Evaluation of a propulsion force coefficients for transportation of wafers in an air levitation system. Korean J Air-Cond Refrig Eng 16(9):820–827Google Scholar
  64. 64.
    Chapuis Y-A, Zhou L, Fujita H, Herv Y (2008) Multi-domains simulation using vhdl-ams for distributed mems in functionnal environment: case of a 2-d air-jet micromanipulator. Sens Actuators A: Phys 148(1):224–238CrossRefGoogle Scholar
  65. 65.
    MacDonald N, Bohringer K, Donald B (1999) Programmable vector fields for distributed manipulation with applications to mems actuator arrays and vibratory parts feeders. Int J Robot Res 18:168–200CrossRefGoogle Scholar
  66. 66.
    Chapuis Y-A, Zhou L, Fukuta Y, Mita Y, Fujita H (2007) Fpga-based decentralized control of arrayed mems for microrobotic application. IEEE Trans Ind Electron 54(4):1926–1936CrossRefGoogle Scholar
  67. 67.
    Iwaki S, Morimasa H, Noritsugu T, Kobayashi M (2011) Contactless manipulation of an object on a plane surface using multiple air jets. In: Proceedings of the IEEE international conference on robotics and automation, pp 3257–3262Google Scholar
  68. 68.
    Wesselingh J, Spronck JW, van Ostayen RAJ, Munnig Schmidt RH, van Eijk J (2009) Contactless positioning using a thin air film. In: Proceedings of the EUSPEN international conferenceGoogle Scholar
  69. 69.
    Matignon L, Laurent GJ, Le Fort-Piat N, Chapuis Y-A (2010) Designing decentralized controllers for distributed-air-jet mems-based micromanipulators by reinforcement learning. J Intel Robot Syst 59(2):145–166CrossRefGoogle Scholar
  70. 70.
    Boutoustous K, Laurent GJ, Dedu E, Matignon L, Bourgeois J, Le Fort-Piat N (2010) Distributed control architecture for smart surfaces. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, pp 2018–2024Google Scholar
  71. 71.
    Becker A, Sandheinrich A, Bretl T (2009) Automated manipulation of spherical objects in three dimensions using a gimbaled air jet. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, pp 781–786Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.FEMTO-ST Institute, Automation and Micro-Mechatronics Systems Department UMR CNRS 6174, ENSMMUniversité de Franche-ComtéBesançonFrance
  2. 2.School of Mechanical EngineeringSungkyunkwan UniversitySuwonKorea

Personalised recommendations